Abstract:Error accumulation is effective for gradient sparsification in distributed settings: initially-unselected gradient entries are eventually selected as their accumulated error exceeds a certain level. The accumulation essentially behaves as a scaling of the learning rate for the selected entries. Although this property prevents the slow-down of lateral movements in distributed gradient descent, it can deteriorate convergence in some settings. This work proposes a novel sparsification scheme that controls the learning rate scaling of error accumulation. The development of this scheme follows two major steps: first, gradient sparsification is formulated as an inverse probability (inference) problem, and the Bayesian optimal sparsification mask is derived as a maximum-a-posteriori estimator. Using the prior distribution inherited from Top-$k$, we derive a new sparsification algorithm which can be interpreted as a regularized form of Top-$k$. We call this algorithm regularized Top-$k$ (RegTop-$k$). It utilizes past aggregated gradients to evaluate posterior statistics of the next aggregation. It then prioritizes the local accumulated gradient entries based on these posterior statistics. We validate our derivation through numerical experiments. In distributed linear regression, it is observed that while Top-$k$ remains at a fixed distance from the global optimum, RegTop-$k$ converges to the global optimum at significantly higher compression ratios. We further demonstrate the generalization of this observation by employing RegTop-$k$ in distributed training of ResNet-18 on CIFAR-10, where it noticeably outperforms Top-$k$.
Abstract:Beam management is an important technique to improve signal strength and reduce interference in wireless communication systems. Recently, there has been increasing interest in using diverse sensing modalities for beam management. However, it remains a big challenge to process multi-modal data efficiently and extract useful information. On the other hand, the recently emerging multi-modal transformer (MMT) is a promising technique that can process multi-modal data by capturing long-range dependencies. While MMT is highly effective in handling multi-modal data and providing robust beam management, integrating reinforcement learning (RL) further enhances their adaptability in dynamic environments. In this work, we propose a two-step beam management method by combining MMT with RL for dynamic beam index prediction. In the first step, we divide available beam indices into several groups and leverage MMT to process diverse data modalities to predict the optimal beam group. In the second step, we employ RL for fast beam decision-making within each group, which in return maximizes throughput. Our proposed framework is tested on a 6G dataset. In this testing scenario, it achieves higher beam prediction accuracy and system throughput compared to both the MMT-only based method and the RL-only based method.
Abstract:We propose an uplink over-the-air aggregation (OAA) method for wireless federated learning (FL) that simultaneously trains multiple models. To maximize the multi-model training convergence rate, we derive an upper bound on the optimality gap of the global model update, and then, formulate an uplink joint transmit-receive beamforming optimization problem to minimize this upper bound. We solve this problem using the block coordinate descent approach, which admits low-complexity closed-form updates. Simulation results show that our proposed multi-model FL with fast OAA substantially outperforms sequentially training multiple models under the conventional single-model approach.
Abstract:In recent years, machine learning (ML) techniques have created numerous opportunities for intelligent mobile networks and have accelerated the automation of network operations. However, complex network tasks may involve variables and considerations even beyond the capacity of traditional ML algorithms. On the other hand, large language models (LLMs) have recently emerged, demonstrating near-human-level performance in cognitive tasks across various fields. However, they remain prone to hallucinations and often lack common sense in basic tasks. Therefore, they are regarded as assistive tools for humans. In this work, we propose the concept of "generative AI-in-the-loop" and utilize the semantic understanding, context awareness, and reasoning abilities of LLMs to assist humans in handling complex or unforeseen situations in mobile communication networks. We believe that combining LLMs and ML models allows both to leverage their respective capabilities and achieve better results than either model alone. To support this idea, we begin by analyzing the capabilities of LLMs and compare them with traditional ML algorithms. We then explore potential LLM-based applications in line with the requirements of next-generation networks. We further examine the integration of ML and LLMs, discussing how they can be used together in mobile networks. Unlike existing studies, our research emphasizes the fusion of LLMs with traditional ML-driven next-generation networks and serves as a comprehensive refinement of existing surveys. Finally, we provide a case study to enhance ML-based network intrusion detection with synthesized data generated by LLMs. Our case study further demonstrates the advantages of our proposed idea.
Abstract:Large language models (LLMs), especially generative pre-trained transformers (GPTs), have recently demonstrated outstanding ability in information comprehension and problem-solving. This has motivated many studies in applying LLMs to wireless communication networks. In this paper, we propose a pre-trained LLM-empowered framework to perform fully automatic network intrusion detection. Three in-context learning methods are designed and compared to enhance the performance of LLMs. With experiments on a real network intrusion detection dataset, in-context learning proves to be highly beneficial in improving the task processing performance in a way that no further training or fine-tuning of LLMs is required. We show that for GPT-4, testing accuracy and F1-Score can be improved by 90%. Moreover, pre-trained LLMs demonstrate big potential in performing wireless communication-related tasks. Specifically, the proposed framework can reach an accuracy and F1-Score of over 95% on different types of attacks with GPT-4 using only 10 in-context learning examples.
Abstract:Next-generation wireless networks need to handle massive user access effectively. This paper addresses the problem of joint group scheduling and multicast beamforming for downlink multicast with many active groups. Aiming to maximize the minimum user throughput, we propose a three-phase approach to tackle this difficult joint optimization problem efficiently. In Phase 1, we utilize the optimal multicast beamforming structure obtained recently to find the group-channel directions for all groups. We propose two low-complexity scheduling algorithms in Phase 2, which determine the subset of groups in each time slot sequentially and the total number of time slots required for all groups. The first algorithm measures the level of spatial separation among groups and selects the dissimilar groups that maximize the minimum user rate into the same time slot. In contrast, the second algorithm first identifies the spatially correlated groups via a learning-based clustering method based on the group-channel directions, and then separates spatially similar groups into different time slots. Finally, the multicast beamformers for the scheduled groups are obtained in each time slot by a computationally efficient method. Simulation results show that our proposed approaches can effectively capture the level of spatial separation among groups for scheduling to improve the minimum user throughput over the conventional approach that serves all groups in a single time slot or one group per time slot, and can be executed with low computational complexity.
Abstract:This paper studies the design of wireless federated learning (FL) for simultaneously training multiple machine learning models. We consider round robin device-model assignment and downlink beamforming for concurrent multiple model updates. After formulating the joint downlink-uplink transmission process, we derive the per-model global update expression over communication rounds, capturing the effect of beamforming and noisy reception. To maximize the multi-model training convergence rate, we derive an upper bound on the optimality gap of the global model update and use it to formulate a multi-group multicast beamforming problem. We show that this problem can be converted to minimizing the sum of inverse received signal-to-interference-plus-noise ratios, which can be solved efficiently by projected gradient descent. Simulation shows that our proposed multi-model FL solution outperforms other alternatives, including conventional single-model sequential training and multi-model zero-forcing beamforming.