Abstract:Designing protein sequences with specific biological functions and structural stability is crucial in biology and chemistry. Generative models already demonstrated their capabilities for reliable protein design. However, previous models are limited to the unconditional generation of protein sequences and lack the controllable generation ability that is vital to biological tasks. In this work, we propose TaxDiff, a taxonomic-guided diffusion model for controllable protein sequence generation that combines biological species information with the generative capabilities of diffusion models to generate structurally stable proteins within the sequence space. Specifically, taxonomic control information is inserted into each layer of the transformer block to achieve fine-grained control. The combination of global and local attention ensures the sequence consistency and structural foldability of taxonomic-specific proteins. Extensive experiments demonstrate that TaxDiff can consistently achieve better performance on multiple protein sequence generation benchmarks in both taxonomic-guided controllable generation and unconditional generation. Remarkably, the sequences generated by TaxDiff even surpass those produced by direct-structure-generation models in terms of confidence based on predicted structures and require only a quarter of the time of models based on the diffusion model. The code for generating proteins and training new versions of TaxDiff is available at:https://github.com/Linzy19/TaxDiff.
Abstract:This paper presents the 2nd place solution to the Google Landmark Retrieval 2021 Competition on Kaggle. The solution is based on a baseline with training tricks from person re-identification, a continent-aware sampling strategy is presented to select training images according to their country tags and a Landmark-Country aware reranking is proposed for the retrieval task. With these contributions, we achieve 0.52995 mAP@100 on private leaderboard. Code available at https://github.com/WesleyZhang1991/Google_Landmark_Retrieval_2021_2nd_Place_Solution
Abstract:As a potential development direction of future transportation, the vacuum tube ultra-high-speed train (UHST) wireless communication systems have newly different channel characteristics from existing high-speed train (HST) scenarios. In this paper, a three-dimensional non-stationary millimeter wave (mmWave) geometry-based stochastic model (GBSM) is proposed to investigate the channel characteristics of UHST channels in vacuum tube scenarios, taking into account the waveguide effect and the impact of tube wall roughness on channel. Then, based on the proposed model, some important time-variant channel statistical properties are studied and compared with those in existing HST and tunnel channels. The results obtained show that the multipath effect in vacuum tube scenarios will be more obvious than tunnel scenarios but less than existing HST scenarios, which will provide some insights for future research on vacuum tube UHST wireless communications.