Abstract:Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance. In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection: during training, models tend to quickly overfit to specific fake patterns in the training set, while other information is not adequately captured, leading to poor generalization when faced with new fake methods. A key insight is to incorporate the rich semantic knowledge embedded within large-scale vision foundation models (VFMs) to expand the previous discriminative space (based on forgery patterns only), such that the discrimination is decided by both forgery and semantic cues, thereby reducing the overfitting to specific forgery patterns. A straightforward solution is to fully fine-tune VFMs, but it risks distorting the well-learned semantic knowledge, pushing the model back toward overfitting. To this end, we design a novel approach called Effort: Efficient orthogonal modeling for generalizable AIGI detection. Specifically, we employ Singular Value Decomposition (SVD) to construct the orthogonal semantic and forgery subspaces. By freezing the principal components and adapting the residual components ($\sim$0.19M parameters), we preserve the original semantic subspace and use its orthogonal subspace for learning forgeries. Extensive experiments on AIGI detection benchmarks demonstrate the superior effectiveness of our approach.
Abstract:Recent advancements in image mixing and generative data augmentation have shown promise in enhancing image classification. However, these techniques face the challenge of balancing semantic fidelity with diversity. Specifically, image mixing involves interpolating two images to create a new one, but this pixel-level interpolation can compromise fidelity. Generative augmentation uses text-to-image generative models to synthesize or modify images, often limiting diversity to avoid generating out-of-distribution data that potentially affects accuracy. We propose that this fidelity-diversity dilemma partially stems from the whole-image paradigm of existing methods. Since an image comprises the class-dependent part (CDP) and the class-independent part (CIP), where each part has fundamentally different impacts on the image's fidelity, treating different parts uniformly can therefore be misleading. To address this fidelity-diversity dilemma, we introduce Decoupled Data Augmentation (De-DA), which resolves the dilemma by separating images into CDPs and CIPs and handling them adaptively. To maintain fidelity, we use generative models to modify real CDPs under controlled conditions, preserving semantic consistency. To enhance diversity, we replace the image's CIP with inter-class variants, creating diverse CDP-CIP combinations. Additionally, we implement an online randomized combination strategy during training to generate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive empirical evaluations validate the effectiveness of our method.
Abstract:Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks. While domain generalization (DG) methods have been developed to enhance FAS performance, they predominantly focus on learning domain-invariant features during training, which may not guarantee generalizability to unseen data that differs largely from the source distributions. Our insight is that testing data can serve as a valuable resource to enhance the generalizability beyond mere evaluation for DG FAS. In this paper, we introduce a novel Test-Time Domain Generalization (TTDG) framework for FAS, which leverages the testing data to boost the model's generalizability. Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space. In particular, we first introduce the innovative TTSP to project the styles of the arbitrarily unseen samples of the testing distribution to the known source space of the training distributions. We then design the efficient DSSS to synthesize diverse style shifts via learnable style bases with two specifically designed losses in a hyperspherical feature space. Our method eliminates the need for model updates at the test time and can be seamlessly integrated into not only the CNN but also ViT backbones. Comprehensive experiments on widely used cross-domain FAS benchmarks demonstrate our method's state-of-the-art performance and effectiveness.
Abstract:Face anti-spoofing (FAS) based on domain generalization (DG) has been recently studied to improve the generalization on unseen scenarios. Previous methods typically rely on domain labels to align the distribution of each domain for learning domain-invariant representations. However, artificial domain labels are coarse-grained and subjective, which cannot reflect real domain distributions accurately. Besides, such domain-aware methods focus on domain-level alignment, which is not fine-grained enough to ensure that learned representations are insensitive to domain styles. To address these issues, we propose a novel perspective for DG FAS that aligns features on the instance level without the need for domain labels. Specifically, Instance-Aware Domain Generalization framework is proposed to learn the generalizable feature by weakening the features' sensitivity to instance-specific styles. Concretely, we propose Asymmetric Instance Adaptive Whitening to adaptively eliminate the style-sensitive feature correlation, boosting the generalization. Moreover, Dynamic Kernel Generator and Categorical Style Assembly are proposed to first extract the instance-specific features and then generate the style-diversified features with large style shifts, respectively, further facilitating the learning of style-insensitive features. Extensive experiments and analysis demonstrate the superiority of our method over state-of-the-art competitors. Code will be publicly available at https://github.com/qianyuzqy/IADG.
Abstract:Face anti-spoofing (FAS) approaches based on unsupervised domain adaption (UDA) have drawn growing attention due to promising performances for target scenarios. Most existing UDA FAS methods typically fit the trained models to the target domain via aligning the distribution of semantic high-level features. However, insufficient supervision of unlabeled target domains and neglect of low-level feature alignment degrade the performances of existing methods. To address these issues, we propose a novel perspective of UDA FAS that directly fits the target data to the models, i.e., stylizes the target data to the source-domain style via image translation, and further feeds the stylized data into the well-trained source model for classification. The proposed Generative Domain Adaptation (GDA) framework combines two carefully designed consistency constraints: 1) Inter-domain neural statistic consistency guides the generator in narrowing the inter-domain gap. 2) Dual-level semantic consistency ensures the semantic quality of stylized images. Besides, we propose intra-domain spectrum mixup to further expand target data distributions to ensure generalization and reduce the intra-domain gap. Extensive experiments and visualizations demonstrate the effectiveness of our method against the state-of-the-art methods.
Abstract:With various face presentation attacks emerging continually, face anti-spoofing (FAS) approaches based on domain generalization (DG) have drawn growing attention. Existing DG-based FAS approaches always capture the domain-invariant features for generalizing on the various unseen domains. However, they neglect individual source domains' discriminative characteristics and diverse domain-specific information of the unseen domains, and the trained model is not sufficient to be adapted to various unseen domains. To address this issue, we propose an Adaptive Mixture of Experts Learning (AMEL) framework, which exploits the domain-specific information to adaptively establish the link among the seen source domains and unseen target domains to further improve the generalization. Concretely, Domain-Specific Experts (DSE) are designed to investigate discriminative and unique domain-specific features as a complement to common domain-invariant features. Moreover, Dynamic Expert Aggregation (DEA) is proposed to adaptively aggregate the complementary information of each source expert based on the domain relevance to the unseen target domain. And combined with meta-learning, these modules work collaboratively to adaptively aggregate meaningful domain-specific information for the various unseen target domains. Extensive experiments and visualizations demonstrate the effectiveness of our method against the state-of-the-art competitors.
Abstract:With various face presentation attacks arising under unseen scenarios, face anti-spoofing (FAS) based on domain generalization (DG) has drawn growing attention due to its robustness. Most existing methods utilize DG frameworks to align the features to seek a compact and generalized feature space. However, little attention has been paid to the feature extraction process for the FAS task, especially the influence of normalization, which also has a great impact on the generalization of the learned representation. To address this issue, we propose a novel perspective of face anti-spoofing that focuses on the normalization selection in the feature extraction process. Concretely, an Adaptive Normalized Representation Learning (ANRL) framework is devised, which adaptively selects feature normalization methods according to the inputs, aiming to learn domain-agnostic and discriminative representation. Moreover, to facilitate the representation learning, Dual Calibration Constraints are designed, including Inter-Domain Compatible loss and Inter-Class Separable loss, which provide a better optimization direction for generalizable representation. Extensive experiments and visualizations are presented to demonstrate the effectiveness of our method against the SOTA competitors.
Abstract:In pursuit of consolidating the face verification systems, prior face anti-spoofing studies excavate the hidden cues in original images to discriminate real persons and diverse attack types with the assistance of auxiliary supervision. However, limited by the following two inherent disturbances in their training process: 1) Complete facial structure in a single image. 2) Implicit subdomains in the whole dataset, these methods are prone to stick on memorization of the entire training dataset and show sensitivity to nonhomologous domain distribution. In this paper, we propose Structure Destruction Module and Content Combination Module to address these two imitations separately. The former mechanism destroys images into patches to construct a non-structural input, while the latter mechanism recombines patches from different subdomains or classes into a mixup construct. Based on this splitting-and-splicing operation, Local Relation Modeling Module is further proposed to model the second-order relationship between patches. We evaluate our method on extensive public datasets and promising experimental results to demonstrate the reliability of our method against state-of-the-art competitors.
Abstract:Face anti-spoofing approaches based on domain generalization (DG) have drawn growing attention due to their robustness for unseen scenarios. Previous methods treat each sample from multiple domains indiscriminately during the training process, and endeavor to extract a common feature space to improve the generalization. However, due to complex and biased data distribution, directly treating them equally will corrupt the generalization ability. To settle the issue, we propose a novel Dual Reweighting Domain Generalization (DRDG) framework which iteratively reweights the relative importance between samples to further improve the generalization. Concretely, Sample Reweighting Module is first proposed to identify samples with relatively large domain bias, and reduce their impact on the overall optimization. Afterwards, Feature Reweighting Module is introduced to focus on these samples and extract more domain-irrelevant features via a self-distilling mechanism. Combined with the domain discriminator, the iteration of the two modules promotes the extraction of generalized features. Extensive experiments and visualizations are presented to demonstrate the effectiveness and interpretability of our method against the state-of-the-art competitors.
Abstract:Face anti-spoofing is crucial to security of face recognition systems. Previous approaches focus on developing discriminative models based on the features extracted from images, which may be still entangled between spoof patterns and real persons. In this paper, motivated by the disentangled representation learning, we propose a novel perspective of face anti-spoofing that disentangles the liveness features and content features from images, and the liveness features is further used for classification. We also put forward a Convolutional Neural Network (CNN) architecture with the process of disentanglement and combination of low-level and high-level supervision to improve the generalization capabilities. We evaluate our method on public benchmark datasets and extensive experimental results demonstrate the effectiveness of our method against the state-of-the-art competitors. Finally, we further visualize some results to help understand the effect and advantage of disentanglement.