Abstract:Domain generalization (DG) strives to address distribution shifts across diverse environments to enhance model's generalizability. Current DG approaches are confined to acquiring robust representations with continuous features, specifically training at the pixel level. However, this DG paradigm may struggle to mitigate distribution gaps in dealing with a large space of continuous features, rendering it susceptible to pixel details that exhibit spurious correlations or noise. In this paper, we first theoretically demonstrate that the domain gaps in continuous representation learning can be reduced by the discretization process. Based on this inspiring finding, we introduce a novel learning paradigm for DG, termed Discrete Domain Generalization (DDG). DDG proposes to use a codebook to quantize the feature map into discrete codewords, aligning semantic-equivalent information in a shared discrete representation space that prioritizes semantic-level information over pixel-level intricacies. By learning at the semantic level, DDG diminishes the number of latent features, optimizing the utilization of the representation space and alleviating the risks associated with the wide-ranging space of continuous features. Extensive experiments across widely employed benchmarks in DG demonstrate DDG's superior performance compared to state-of-the-art approaches, underscoring its potential to reduce the distribution gaps and enhance the model's generalizability.
Abstract:Domain generalization (DG) aims to improve the generalizability of computer vision models toward distribution shifts. The mainstream DG methods focus on learning domain invariance, however, such methods overlook the potential inherent in domain-specific information. While the prevailing practice of discriminative linear classifier has been tailored to domain-invariant features, it struggles when confronted with diverse domain-specific information, e.g., intra-class shifts, that exhibits multi-modality. To address these issues, we explore the theoretical implications of relying on domain invariance, revealing the crucial role of domain-specific information in mitigating the target risk for DG. Drawing from these insights, we propose Generative Classifier-driven Domain Generalization (GCDG), introducing a generative paradigm for the DG classifier based on Gaussian Mixture Models (GMMs) for each class across domains. GCDG consists of three key modules: Heterogeneity Learning Classifier~(HLC), Spurious Correlation Blocking~(SCB), and Diverse Component Balancing~(DCB). Concretely, HLC attempts to model the feature distributions and thereby capture valuable domain-specific information via GMMs. SCB identifies the neural units containing spurious correlations and perturbs them, mitigating the risk of HLC learning spurious patterns. Meanwhile, DCB ensures a balanced contribution of components in HLC, preventing the underestimation or neglect of critical components. In this way, GCDG excels in capturing the nuances of domain-specific information characterized by diverse distributions. GCDG demonstrates the potential to reduce the target risk and encourage flat minima, improving the generalizability. Extensive experiments show GCDG's comparable performance on five DG benchmarks and one face anti-spoofing dataset, seamlessly integrating into existing DG methods with consistent improvements.
Abstract:Recent advancements in multimodal models have shown a strong ability in visual perception, reasoning abilities, and vision-language understanding. However, studies on visual matching ability are missing, where finding the visual correspondence of objects is essential in vision research. Our research reveals that the matching capabilities in recent multimodal LLMs (MLLMs) still exhibit systematic shortcomings, even with current strong MLLMs models, GPT-4o. In particular, we construct a Multimodal Visual Matching (MMVM) benchmark to fairly benchmark over 30 different MLLMs. The MMVM benchmark is built from 15 open-source datasets and Internet videos with manual annotation. We categorize the data samples of MMVM benchmark into eight aspects based on the required cues and capabilities to more comprehensively evaluate and analyze current MLLMs. In addition, we have designed an automatic annotation pipeline to generate the MMVM SFT dataset, including 220K visual matching data with reasoning annotation. Finally, we present CoLVA, a novel contrastive MLLM with two novel technical designs: fine-grained vision expert with object-level contrastive learning and instruction augmentation strategy. CoLVA achieves 51.06\% overall accuracy (OA) on the MMVM benchmark, surpassing GPT-4o and baseline by 8.41\% and 23.58\% OA, respectively. The results show the effectiveness of our MMVM SFT dataset and our novel technical designs. Code, benchmark, dataset, and models are available at https://github.com/zhouyiks/CoLVA.
Abstract:Style transfer aims to generate a new image preserving the content but with the artistic representation of the style source. Most of the existing methods are based on Transformers or diffusion models, however, they suffer from quadratic computational complexity and high inference time. RWKV, as an emerging deep sequence models, has shown immense potential for long-context sequence modeling in NLP tasks. In this work, we present a novel framework StyleRWKV, to achieve high-quality style transfer with limited memory usage and linear time complexity. Specifically, we propose a Recurrent WKV (Re-WKV) attention mechanism, which incorporates bidirectional attention to establish a global receptive field. Additionally, we develop a Deformable Shifting (Deform-Shifting) layer that introduces learnable offsets to the sampling grid of the convolution kernel, allowing tokens to shift flexibly and adaptively from the region of interest, thereby enhancing the model's ability to capture local dependencies. Finally, we propose a Skip Scanning (S-Scanning) method that effectively establishes global contextual dependencies. Extensive experiments with analysis including qualitative and quantitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of stylization quality, model complexity, and inference efficiency.
Abstract:Point Transformers (PoinTr) have shown great potential in point cloud completion recently. Nevertheless, effective domain adaptation that improves transferability toward target domains remains unexplored. In this paper, we delve into this topic and empirically discover that direct feature alignment on point Transformer's CNN backbone only brings limited improvements since it cannot guarantee sequence-wise domain-invariant features in the Transformer. To this end, we propose a pioneering Domain Adaptive Point Transformer (DAPoinTr) framework for point cloud completion. DAPoinTr consists of three key components: Domain Query-based Feature Alignment (DQFA), Point Token-wise Feature alignment (PTFA), and Voted Prediction Consistency (VPC). In particular, DQFA is presented to narrow the global domain gaps from the sequence via the presented domain proxy and domain query at the Transformer encoder and decoder, respectively. PTFA is proposed to close the local domain shifts by aligning the tokens, \emph{i.e.,} point proxy and dynamic query, at the Transformer encoder and decoder, respectively. VPC is designed to consider different Transformer decoders as multiple of experts (MoE) for ensembled prediction voting and pseudo-label generation. Extensive experiments with visualization on several domain adaptation benchmarks demonstrate the effectiveness and superiority of our DAPoinTr compared with state-of-the-art methods. Code will be publicly available at: https://github.com/Yinghui-Li-New/DAPoinTr
Abstract:Human motion generation is a long-standing problem, and scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data whose quantity is limited. Meanwhile, it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this framework, we disentangle human-scene interaction from motion synthesis during training and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. The proposed implicit policy optimizes the intermediate noised motion in a GAN Inversion manner to maintain motion continuity and control keyframe poses though the ControlNet branch and motion inpainting. For long-term motion synthesis, we introduce motion blending for stable transitions between multiple sub-tasks, where motions are fused in rotation power space and translation linear space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. https://jingyugong.github.io/DiffusionImplicitPolicy/
Abstract:In this paper, we present PCoTTA, an innovative, pioneering framework for Continual Test-Time Adaptation (CoTTA) in multi-task point cloud understanding, enhancing the model's transferability towards the continually changing target domain. We introduce a multi-task setting for PCoTTA, which is practical and realistic, handling multiple tasks within one unified model during the continual adaptation. Our PCoTTA involves three key components: automatic prototype mixture (APM), Gaussian Splatted feature shifting (GSFS), and contrastive prototype repulsion (CPR). Firstly, APM is designed to automatically mix the source prototypes with the learnable prototypes with a similarity balancing factor, avoiding catastrophic forgetting. Then, GSFS dynamically shifts the testing sample toward the source domain, mitigating error accumulation in an online manner. In addition, CPR is proposed to pull the nearest learnable prototype close to the testing feature and push it away from other prototypes, making each prototype distinguishable during the adaptation. Experimental comparisons lead to a new benchmark, demonstrating PCoTTA's superiority in boosting the model's transferability towards the continually changing target domain.
Abstract:Speech-driven gesture generation aims at synthesizing a gesture sequence synchronized with the input speech signal. Previous methods leverage neural networks to directly map a compact audio representation to the gesture sequence, ignoring the semantic association of different modalities and failing to deal with salient gestures. In this paper, we propose a novel speech-driven gesture generation method by emphasizing the semantic consistency of salient posture. Specifically, we first learn a joint manifold space for the individual representation of audio and body pose to exploit the inherent semantic association between two modalities, and propose to enforce semantic consistency via a consistency loss. Furthermore, we emphasize the semantic consistency of salient postures by introducing a weakly-supervised detector to identify salient postures, and reweighting the consistency loss to focus more on learning the correspondence between salient postures and the high-level semantics of speech content. In addition, we propose to extract audio features dedicated to facial expression and body gesture separately, and design separate branches for face and body gesture synthesis. Extensive experimental results demonstrate the superiority of our method over the state-of-the-art approaches.
Abstract:Domain Generalization (DG) has been recently explored to improve the generalizability of point cloud classification (PCC) models toward unseen domains. However, they often suffer from limited receptive fields or quadratic complexity due to the use of convolution neural networks or vision Transformers. In this paper, we present the first work that studies the generalizability of state space models (SSMs) in DG PCC and find that directly applying SSMs into DG PCC will encounter several challenges: the inherent topology of the point cloud tends to be disrupted and leads to noise accumulation during the serialization stage. Besides, the lack of designs in domain-agnostic feature learning and data scanning will introduce unanticipated domain-specific information into the 3D sequence data. To this end, we propose a novel framework, PointDGMamba, that excels in strong generalizability toward unseen domains and has the advantages of global receptive fields and efficient linear complexity. PointDGMamba consists of three innovative components: Masked Sequence Denoising (MSD), Sequence-wise Cross-domain Feature Aggregation (SCFA), and Dual-level Domain Scanning (DDS). In particular, MSD selectively masks out the noised point tokens of the point cloud sequences, SCFA introduces cross-domain but same-class point cloud features to encourage the model to learn how to extract more generalized features. DDS includes intra-domain scanning and cross-domain scanning to facilitate information exchange between features. In addition, we propose a new and more challenging benchmark PointDG-3to1 for multi-domain generalization. Extensive experiments demonstrate the effectiveness and state-of-the-art performance of our presented PointDGMamba.
Abstract:Surface defect detection is significant in industrial production. However, detecting defects with varying textures and anomaly classes during the test time is challenging. This arises due to the differences in data distributions between source and target domains. Collecting and annotating new data from the target domain and retraining the model is time-consuming and costly. In this paper, we propose a novel test-time adaptation surface-defect detection approach that adapts pre-trained models to new domains and classes during inference. Our approach involves two core ideas. Firstly, we introduce a supervisor to filter samples and select only those with high confidence to update the model. This ensures that the model is not excessively biased by incorrect data. Secondly, we propose the augmented mean prediction to generate robust pseudo labels and a dynamically-balancing loss to facilitate the model in effectively integrating classification and segmentation results to improve surface-defect detection accuracy. Our approach is real-time and does not require additional offline retraining. Experiments demonstrate it outperforms state-of-the-art techniques.