Abstract:Any-to-any singing voice conversion (SVC) aims to transfer a target singer's timbre to other songs using a short voice sample. However many diffusion model based any-to-any SVC methods, which have achieved impressive results, usually suffered from low efficiency caused by a mass of inference steps. In this paper, we propose LCM-SVC, a latent consistency distillation (LCD) based latent diffusion model (LDM) to accelerate inference speed. We achieved one-step or few-step inference while maintaining the high performance by distilling a pre-trained LDM based SVC model, which had the advantages of timbre decoupling and sound quality. Experimental results show that our proposed method can significantly reduce the inference time and largely preserve the sound quality and timbre similarity comparing with other state-of-the-art SVC models. Audio samples are available at https://sounddemos.github.io/lcm-svc.
Abstract:Any-to-any singing voice conversion (SVC) is an interesting audio editing technique, aiming to convert the singing voice of one singer into that of another, given only a few seconds of singing data. However, during the conversion process, the issue of timbre leakage is inevitable: the converted singing voice still sounds like the original singer's voice. To tackle this, we propose a latent diffusion model for SVC (LDM-SVC) in this work, which attempts to perform SVC in the latent space using an LDM. We pretrain a variational autoencoder structure using the noted open-source So-VITS-SVC project based on the VITS framework, which is then used for the LDM training. Besides, we propose a singer guidance training method based on classifier-free guidance to further suppress the timbre of the original singer. Experimental results show the superiority of the proposed method over previous works in both subjective and objective evaluations of timbre similarity.
Abstract:Advanced Audio-Visual Speech Recognition (AVSR) systems have been observed to be sensitive to missing video frames, performing even worse than single-modality models. While applying the dropout technique to the video modality enhances robustness to missing frames, it simultaneously results in a performance loss when dealing with complete data input. In this paper, we investigate this contrasting phenomenon from the perspective of modality bias and reveal that an excessive modality bias on the audio caused by dropout is the underlying reason. Moreover, we present the Modality Bias Hypothesis (MBH) to systematically describe the relationship between modality bias and robustness against missing modality in multimodal systems. Building on these findings, we propose a novel Multimodal Distribution Approximation with Knowledge Distillation (MDA-KD) framework to reduce over-reliance on the audio modality and to maintain performance and robustness simultaneously. Finally, to address an entirely missing modality, we adopt adapters to dynamically switch decision strategies. The effectiveness of our proposed approach is evaluated and validated through a series of comprehensive experiments using the MISP2021 and MISP2022 datasets. Our code is available at https://github.com/dalision/ModalBiasAVSR
Abstract:The rapid progress in personalized speech generation technology, including personalized text-to-speech (TTS) and voice conversion (VC), poses a challenge in distinguishing between generated and real speech for human listeners, resulting in an urgent demand in protecting speakers' voices from malicious misuse. In this regard, we propose a speaker protection method based on adversarial attacks. The proposed method perturbs speech signals by minimally altering the original speech while rendering downstream speech generation models unable to accurately generate the voice of the target speaker. For validation, we employ the open-source pre-trained YourTTS model for speech generation and protect the target speaker's speech in the white-box scenario. Automatic speaker verification (ASV) evaluations were carried out on the generated speech as the assessment of the voice protection capability. Our experimental results show that we successfully perturbed the speaker encoder of the YourTTS model using the gradient-based I-FGSM adversarial perturbation method. Furthermore, the adversarial perturbation is effective in preventing the YourTTS model from generating the speech of the target speaker. Audio samples can be found in https://voiceprivacy.github.io/Adeversarial-Speech-with-YourTTS.