Abstract:Offline evaluation of LLMs is crucial in understanding their capacities, though current methods remain underexplored in existing research. In this work, we focus on the offline evaluation of the chain-of-thought capabilities and show how to optimize LLMs based on the proposed evaluation method. To enable offline feedback with rich knowledge and reasoning paths, we use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts. Due to the heterogeneity between LLM reasoning and KG structures, direct interaction and feedback from KGs on LLM behavior are challenging, as they require accurate entity linking and grounding of LLM-generated chains of thought in the KG. To address the above challenge, we propose an offline chain-of-thought evaluation framework, OCEAN, which models chain-of-thought reasoning in LLMs as an MDP and evaluate the policy's alignment with KG preference modeling. To overcome the reasoning heterogeneity and grounding problems, we leverage on-policy KG exploration and RL to model a KG policy that generates token-level likelihood distributions for LLM-generated chain-of-thought reasoning paths, simulating KG reasoning preference. Then we incorporate the knowledge-graph feedback on the validity and alignment of the generated reasoning paths into inverse propensity scores and propose KG-IPS estimator. Theoretically, we prove the unbiasedness of the proposed KG-IPS estimator and provide a lower bound on its variance. With the off-policy evaluated value function, we can directly enable off-policy optimization to further enhance chain-of-thought alignment. Our empirical study shows that OCEAN can be efficiently optimized for generating chain-of-thought reasoning paths with higher estimated values without affecting LLMs' general abilities in downstream tasks or their internal knowledge.
Abstract:Human-object interaction (HOI) detection has seen advancements with Vision Language Models (VLMs), but these methods often depend on extensive manual annotations. Vision Large Language Models (VLLMs) can inherently recognize and reason about interactions at the image level but are computationally heavy and not designed for instance-level HOI detection. To overcome these limitations, we propose a Cross-Level HOI distillation (CL-HOI) framework, which distills instance-level HOIs from VLLMs image-level understanding without the need for manual annotations. Our approach involves two stages: context distillation, where a Visual Linguistic Translator (VLT) converts visual information into linguistic form, and interaction distillation, where an Interaction Cognition Network (ICN) reasons about spatial, visual, and context relations. We design contrastive distillation losses to transfer image-level context and interaction knowledge from the teacher to the student model, enabling instance-level HOI detection. Evaluations on HICO-DET and V-COCO datasets demonstrate that our CL-HOI surpasses existing weakly supervised methods and VLLM supervised methods, showing its efficacy in detecting HOIs without manual labels.
Abstract:Previous surface reconstruction methods either suffer from low geometric accuracy or lengthy training times when dealing with real-world complex dynamic scenes involving multi-person activities, and human-object interactions. To tackle the dynamic contents and the occlusions in complex scenes, we present a space-time 2D Gaussian Splatting approach. Specifically, to improve geometric quality in dynamic scenes, we learn canonical 2D Gaussian splats and deform these 2D Gaussian splats while enforcing the disks of the Gaussian located on the surface of the objects by introducing depth and normal regularizers. Further, to tackle the occlusion issues in complex scenes, we introduce a compositional opacity deformation strategy, which further reduces the surface recovery of those occluded areas. Experiments on real-world sparse-view video datasets and monocular dynamic datasets demonstrate that our reconstructions outperform state-of-the-art methods, especially for the surface of the details. The project page and more visualizations can be found at: https://tb2-sy.github.io/st-2dgs/.
Abstract:Although fully end-to-end speaker diarization systems have made significant progress in recent years, modular systems often achieve superior results in real-world scenarios due to their greater adaptability and robustness. Historically, modular speaker diarization methods have seldom discussed how to leverage spatial cues from multi-channel speech. This paper proposes a three-stage modular system to enhance single-channel neural speaker diarization systems and recognition performance by utilizing spatial cues from multi-channel speech to provide more accurate initialization for each stage of neural speaker diarization (NSD) decoding: (1) Overlap detection and continuous speech separation (CSS) on multi-channel speech are used to obtain cleaner single speaker speech segments for clustering, followed by the first NSD decoding pass. (2) The results from the first pass initialize a complex Angular Central Gaussian Mixture Model (cACGMM) to estimate speaker-wise masks on multi-channel speech, and through Overlap-add and Mask-to-VAD, achieve initialization with lower speaker error (SpkErr), followed by the second NSD decoding pass. (3) The second decoding results are used for guided source separation (GSS), recognizing and filtering short segments containing less one word to obtain cleaner speech segments, followed by re-clustering and the final NSD decoding pass. We presented the progressively explored evaluation results from the CHiME-8 NOTSOFAR-1 (Natural Office Talkers in Settings Of Far-field Audio Recordings) challenge, demonstrating the effectiveness of our system and its contribution to improving recognition performance. Our final system achieved the first place in the challenge.
Abstract:Direct Preference Optimization (DPO) is a method for enhancing model performance by directly optimizing for the preferences or rankings of outcomes, instead of traditional loss functions. This approach has proven effective in aligning Large Language Models (LLMs) with human preferences. Despite its widespread use across various tasks, DPO has been criticized for its sensitivity to the effectiveness of Supervised Fine-Tuning (SFT) and its limitations in enabling models to learn human-preferred responses, leading to less satisfactory performance. To address these limitations, we propose Aligned Supervised Fine-Tuning (ASFT), an effective approach that better aligns LLMs with pair-wise datasets by optimizing absolute likelihood for each response, rather than using the Bradley-Terry model, and eliminates the need for a reference model. Through theoretical gradient analysis, we demonstrate that ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data at a faster rate than it increases the probability of producing preferred data. Additionally, we compare ASFT to DPO and its latest variants, such as the single-step approach ORPO, using the latest instruction-tuned model Llama3, which has been fine-tuned on UltraFeedback and HH-RLHF. We evaluated performance on instruction-following benchmarks like MT-Bench and traditional text generation metrics such as BLEU-4 and ROUGE-L. Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
Abstract:Recent advances in machine learning algorithms have garnered growing interest in developing versatile Embodied AI systems. However, current research in this domain reveals opportunities for improvement. First, the direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling, potentially limiting its performance in Embodied AI tasks. Second, the reliance on task-specific configurations, such as pre-trained modules and dataset-specific logic, compromises the generalizability of these methods. We address these constraints by initially exploring the unique differences between Embodied AI tasks and other sequential data tasks through the lens of Causality, presenting a causal framework to elucidate the inadequacies of conventional sequential methods for Embodied AI. By leveraging this causal perspective, we propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module to enhance the models's Environmental Understanding capability. Meanwhile, our method is devoid of task-specific inductive biases and can be trained in an End-to-End manner, which enhances the method's generalizability across various contexts. Empirical evaluations demonstrate that our methodology consistently surpasses benchmark performances across a spectrum of settings, tasks and simulation environments. Extensive ablation studies reveal that the performance gains can be attributed to the Causal Understanding Module, which demonstrates effectiveness and efficiency in both Reinforcement Learning and Supervised Learning settings.
Abstract:Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions, but recent studies reveal that these models often fail to achieve satisfactory results on questions involving reasoning, such as mathematics or physics questions. This phenomenon is usually attributed to the uncertainty regarding whether these models could genuinely comprehend the knowledge embedded in the text or merely learn to replicate the token distribution without a true understanding of the content. In this paper, we delve into this problem and aim to enhance the reasoning capabilities of LLMs. First, we investigate if the model has genuine reasoning capabilities by visualizing the text generation process at the attention and representation level. Then, we formulate the reasoning process of LLMs into a causal framework, which provides a formal explanation of the problems we observe in the visualization. Finally, building upon this causal framework, we propose Deconfounded Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities by encouraging the model to extract the general problem-solving skills and apply these skills to different questions. Experiments show that our method outperforms the baseline consistently across multiple benchmarks, and with only 1.2M tunable parameters, we achieve better or comparable results to other fine-tuning methods. This demonstrates the effectiveness and efficiency of our method in improving the overall accuracy and reliability of LLMs.
Abstract:Disentangled Representation Learning aims to improve the explainability of deep learning methods by training a data encoder that identifies semantically meaningful latent variables in the data generation process. Nevertheless, there is no consensus regarding a universally accepted definition for the objective of disentangled representation learning. In particular, there is a considerable amount of discourse regarding whether should the latent variables be mutually independent or not. In this paper, we first investigate these arguments on the interrelationships between latent variables by establishing a conceptual bridge between Epistemology and Disentangled Representation Learning. Then, inspired by these interdisciplinary concepts, we introduce a two-level latent space framework to provide a general solution to the prior arguments on this issue. Finally, we propose a novel method for disentangled representation learning by employing an integration of mutual information constraint and independence constraint within the Generative Adversarial Network (GAN) framework. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches in both quantitative and qualitative evaluations. The method exhibits strong performance across multiple commonly used metrics and demonstrates a great capability in disentangling various semantic factors, leading to an improved quality of controllable generation, which consequently benefits the explainability of the algorithm.
Abstract:This technical report outlines our submission system for the CHiME-8 NOTSOFAR-1 Challenge. The primary difficulty of this challenge is the dataset recorded across various conference rooms, which captures real-world complexities such as high overlap rates, background noises, a variable number of speakers, and natural conversation styles. To address these issues, we optimized the system in several aspects: For front-end speech signal processing, we introduced a data-driven joint training method for diarization and separation (JDS) to enhance audio quality. Additionally, we also integrated traditional guided source separation (GSS) for multi-channel track to provide complementary information for the JDS. For back-end speech recognition, we enhanced Whisper with WavLM, ConvNeXt, and Transformer innovations, applying multi-task training and Noise KLD augmentation, to significantly advance ASR robustness and accuracy. Our system attained a Time-Constrained minimum Permutation Word Error Rate (tcpWER) of 14.265% and 22.989% on the CHiME-8 NOTSOFAR-1 Dev-set-2 multi-channel and single-channel tracks, respectively.
Abstract:Autonomous driving in complex urban scenarios requires 3D perception to be both comprehensive and precise. Traditional 3D perception methods focus on object detection, resulting in sparse representations that lack environmental detail. Recent approaches estimate 3D occupancy around vehicles for a more comprehensive scene representation. However, dense 3D occupancy prediction increases computational demands, challenging the balance between efficiency and resolution. High-resolution occupancy grids offer accuracy but demand substantial computational resources, while low-resolution grids are efficient but lack detail. To address this dilemma, we introduce AdaOcc, a novel adaptive-resolution, multi-modal prediction approach. Our method integrates object-centric 3D reconstruction and holistic occupancy prediction within a single framework, performing highly detailed and precise 3D reconstruction only in regions of interest (ROIs). These high-detailed 3D surfaces are represented in point clouds, thus their precision is not constrained by the predefined grid resolution of the occupancy map. We conducted comprehensive experiments on the nuScenes dataset, demonstrating significant improvements over existing methods. In close-range scenarios, we surpass previous baselines by over 13% in IOU, and over 40% in Hausdorff distance. In summary, AdaOcc offers a more versatile and effective framework for delivering accurate 3D semantic occupancy prediction across diverse driving scenarios.