Abstract:Jailbreak attacks can circumvent model safety guardrails and reveal critical blind spots. Prior attacks on text-to-video (T2V) models typically add adversarial perturbations to obviously unsafe prompts, which are often easy to detect and defend. In contrast, we show that benign-looking prompts containing rich, implicit cues can induce T2V models to generate semantically unsafe videos that both violate policy and preserve the original (blocked) intent. To realize this, we propose VEIL, a jailbreak framework that leverages T2V models' cross-modal associative patterns via a modular prompt design. Specifically, our prompts combine three components: neutral scene anchors, which provide the surface-level scene description extracted from the blocked intent to maintain plausibility; latent auditory triggers, textual descriptions of innocuous-sounding audio events (e.g., creaking, muffled noises) that exploit learned audio-visual co-occurrence priors to bias the model toward particular unsafe visual concepts; and stylistic modulators, cinematic directives (e.g., camera framing, atmosphere) that amplify and stabilize the latent trigger's effect. We formalize attack generation as a constrained optimization over the above modular prompt space and solve it with a guided search procedure that balances stealth and effectiveness. Extensive experiments over 7 T2V models demonstrate the efficacy of our attack, achieving a 23 percent improvement in average attack success rate in commercial models.
Abstract:Randomized controlled trials (RCTs) are indispensable for establishing the clinical value of medical artificial-intelligence (AI) tools, yet their high cost and long timelines hinder timely validation as new models emerge rapidly. Here, we propose BRIDGE, a data-reuse RCT design for AI-based risk models. AI risk models support a broad range of interventions, including screening, treatment selection, and clinical alerts. BRIDGE trials recycle participant-level data from completed trials of AI models when legacy and updated models make concordant predictions, thereby reducing the enrollment requirement for subsequent trials. We provide a practical checklist for investigators to assess whether reusing data from previous trials allows for valid causal inference and preserves type I error. Using real-world datasets across breast cancer, cardiovascular disease, and sepsis, we demonstrate concordance between successive AI models, with up to 64.8% overlap in top 5% high-risk cohorts. We then simulate a series of breast cancer screening studies, where our design reduced required enrollment by 46.6%--saving over US$2.8 million--while maintaining 80% power. By transforming trials into adaptive, modular studies, our proposed design makes Level I evidence generation feasible for every model iteration, thereby accelerating cost-effective translation of AI into routine care.




Abstract:Biological neurons communicate through spike trains, discrete, irregular bursts of activity that exhibit variability far beyond the modeling capacity of conventional variational autoencoders (VAEs). Recent work, such as the Poisson-VAE, makes a biologically inspired move by modeling spike counts using the Poisson distribution. However, they impose a rigid constraint: equal mean and variance, which fails to reflect the true stochastic nature of neural activity. In this work, we challenge this constraint and introduce NegBio-VAE, a principled extension of the VAE framework that models spike counts using the negative binomial distribution. This shift grants explicit control over dispersion, unlocking a broader and more accurate family of neural representations. We further develop two ELBO optimization schemes and two differentiable reparameterization strategies tailored to the negative binomial setting. By introducing one additional dispersion parameter, NegBio-VAE generalizes the Poisson latent model to a negative binomial formulation. Empirical results demonstrate this minor yet impactful change leads to significant gains in reconstruction fidelity, highlighting the importance of explicitly modeling overdispersion in spike-like activations.
Abstract:Time series anomaly detection is critical for system monitoring and risk identification, across various domains, such as finance and healthcare. However, for most reconstruction-based approaches, detecting anomalies remains a challenge due to the complexity of sequential patterns in time series data. On the one hand, reconstruction-based techniques are susceptible to computational deviation stemming from anomalies, which can lead to impure representations of normal sequence patterns. On the other hand, they often focus on the time-domain dependencies of time series, while ignoring the alignment of frequency information beyond the time domain. To address these challenges, we propose a novel Frequency-augmented Convolutional Transformer (FreCT). FreCT utilizes patch operations to generate contrastive views and employs an improved Transformer architecture integrated with a convolution module to capture long-term dependencies while preserving local topology information. The introduced frequency analysis based on Fourier transformation could enhance the model's ability to capture crucial characteristics beyond the time domain. To protect the training quality from anomalies and improve the robustness, FreCT deploys stop-gradient Kullback-Leibler (KL) divergence and absolute error to optimize consistency information in both time and frequency domains. Extensive experiments on four public datasets demonstrate that FreCT outperforms existing methods in identifying anomalies.
Abstract:Fraud detection is crucial in social service networks to maintain user trust and improve service network security. Existing spectral graph-based methods address this challenge by leveraging different graph filters to capture signals with different frequencies in service networks. However, most graph filter-based methods struggle with deriving clean and discriminative graph signals. On the one hand, they overlook the noise in the information propagation process, resulting in degradation of filtering ability. On the other hand, they fail to discriminate the frequency-specific characteristics of graph signals, leading to distortion of signals fusion. To address these issues, we develop a novel spectral graph network based on information bottleneck theory (SGNN-IB) for fraud detection in service networks. SGNN-IB splits the original graph into homophilic and heterophilic subgraphs to better capture the signals at different frequencies. For the first limitation, SGNN-IB applies information bottleneck theory to extract key characteristics of encoded representations. For the second limitation, SGNN-IB introduces prototype learning to implement signal fusion, preserving the frequency-specific characteristics of signals. Extensive experiments on three real-world datasets demonstrate that SGNN-IB outperforms state-of-the-art fraud detection methods.
Abstract:Generative AI has significantly changed industries by enabling text-driven image generation, yet challenges remain in achieving high-resolution outputs that align with fine-grained user preferences. Consequently, multi-round interactions are necessary to ensure the generated images meet expectations. Previous methods enhanced prompts via reward feedback but did not optimize over a multi-round dialogue dataset. In this work, we present a Visual Co-Adaptation (VCA) framework incorporating human-in-the-loop feedback, leveraging a well-trained reward model aligned with human preferences. Using a diverse multi-turn dialogue dataset, our framework applies multiple reward functions, such as diversity, consistency, and preference feedback, while fine-tuning the diffusion model through LoRA, thus optimizing image generation based on user input. We also construct multi-round dialogue datasets of prompts and image pairs aligned with user intent. Experiments demonstrate that our method outperforms state-of-the-art baselines, significantly improving image consistency and alignment with user intent. Our approach consistently surpasses competing models in user satisfaction, especially in multi-turn dialogue scenarios.
Abstract:Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
Abstract:Time series anomaly detection holds notable importance for risk identification and fault detection across diverse application domains. Unsupervised learning methods have become popular because they have no requirement for labels. However, due to the challenges posed by the multiplicity of abnormal patterns, the sparsity of anomalies, and the growth of data scale and complexity, these methods often fail to capture robust and representative dependencies within the time series for identifying anomalies. To enhance the ability of models to capture normal patterns of time series and avoid the retrogression of modeling ability triggered by the dependencies on high-quality prior knowledge, we propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD). Specifically, DConAD generates differential data to provide additional information about time series and utilizes transformer-based architecture to capture spatiotemporal dependencies, which enhances the robustness of unbiased representation learning ability. Furthermore, DConAD implements a novel KL divergence-based contrastive learning paradigm that only uses positive samples to avoid deviation from reconstruction and deploys the stop-gradient strategy to compel convergence. Extensive experiments on five public datasets show the superiority and effectiveness of DConAD compared with nine baselines. The code is available at https://github.com/shaieesss/DConAD.
Abstract:Time series anomaly detection is crucial for maintaining stable systems. Existing methods face two main challenges. First, it is difficult to directly model the dependencies of diverse and complex patterns within the sequences. Second, many methods that optimize parameters using mean squared error struggle with noise in the time series, leading to performance deterioration. To address these challenges, we propose a transformer-based framework built on decomposition (TransDe) for multivariate time series anomaly detection. The key idea is to combine the strengths of time series decomposition and transformers to effectively learn the complex patterns in normal time series data. A multi-scale patch-based transformer architecture is proposed to exploit the representative dependencies of each decomposed component of the time series. Furthermore, a contrastive learn paradigm based on patch operation is proposed, which leverages KL divergence to align the positive pairs, namely the pure representations of normal patterns between different patch-level views. A novel asynchronous loss function with a stop-gradient strategy is further introduced to enhance the performance of TransDe effectively. It can avoid time-consuming and labor-intensive computation costs in the optimization process. Extensive experiments on five public datasets are conducted and TransDe shows superiority compared with twelve baselines in terms of F1 score. Our code is available at https://github.com/shaieesss/TransDe.
Abstract:Fraudulent activities have significantly increased across various domains, such as e-commerce, online review platforms, and social networks, making fraud detection a critical task. Spatial Graph Neural Networks (GNNs) have been successfully applied to fraud detection tasks due to their strong inductive learning capabilities. However, existing spatial GNN-based methods often enhance the graph structure by excluding heterophilic neighbors during message passing to align with the homophilic bias of GNNs. Unfortunately, this approach can disrupt the original graph topology and increase uncertainty in predictions. To address these limitations, this paper proposes a novel framework, Dual-channel Heterophilic Message Passing (DHMP), for fraud detection. DHMP leverages a heterophily separation module to divide the graph into homophilic and heterophilic subgraphs, mitigating the low-pass inductive bias of traditional GNNs. It then applies shared weights to capture signals at different frequencies independently and incorporates a customized sampling strategy for training. This allows nodes to adaptively balance the contributions of various signals based on their labels. Extensive experiments on three real-world datasets demonstrate that DHMP outperforms existing methods, highlighting the importance of separating signals with different frequencies for improved fraud detection. The code is available at https://github.com/shaieesss/DHMP.