Abstract:Graph-level clustering remains a pivotal yet formidable challenge in graph learning. Recently, the integration of deep learning with representation learning has demonstrated notable advancements, yielding performance enhancements to a certain degree. However, existing methods suffer from at least one of the following issues: 1. the original graph structure has noise, and 2. during feature propagation and pooling processes, noise is gradually aggregated into the graph-level embeddings through information propagation. Consequently, these two limitations mask clustering-friendly information, leading to suboptimal graph-level clustering performance. To this end, we propose a novel Dual Boost-Driven Graph-Level Clustering Network (DBGCN) to alternately promote graph-level clustering and filtering out interference information in a unified framework. Specifically, in the pooling step, we evaluate the contribution of features at the global and optimize them using a learnable transformation matrix to obtain high-quality graph-level representation, such that the model's reasoning capability can be improved. Moreover, to enable reliable graph-level clustering, we first identify and suppress information detrimental to clustering by evaluating similarities between graph-level representations, providing more accurate guidance for multi-view fusion. Extensive experiments demonstrated that DBGCN outperforms the state-of-the-art graph-level clustering methods on six benchmark datasets.
Abstract:This work presents the first segmentation study of both diseased and healthy skin in standard camera photographs from a clinical environment. Challenges arise from varied lighting conditions, skin types, backgrounds, and pathological states. For study, 400 clinical photographs (with skin segmentation masks) representing various pathological states of skin are retrospectively collected from a primary care network. 100 images are used for training and fine-tuning, and 300 are used for evaluation. This distribution between training and test partitions is chosen to reflect the difficulty in amassing large quantities of labeled data in this domain. A deep learning approach is used, and 3 public segmentation datasets of healthy skin are collected to study the potential benefits of pre-training. Two variants of U-Net are evaluated: U-Net and Dense Residual U-Net. We find that Dense Residual U-Nets have a 7.8% improvement in Jaccard, compared to classical U-Net architectures (0.55 vs. 0.51 Jaccard), for direct transfer, where fine-tuning data is not utilized. However, U-Net outperforms Dense Residual U-Net for both direct training (0.83 vs. 0.80) and fine-tuning (0.89 vs. 0.88). The stark performance improvement with fine-tuning compared to direct transfer and direct training emphasizes both the need for adequate representative data of diseased skin, and the utility of other publicly available data sources for this task.