Abstract:Large language models (LLMs) have significantly enhanced the performance of numerous applications, from intelligent conversations to text generation. However, their inherent security vulnerabilities have become an increasingly significant challenge, especially with respect to jailbreak attacks. Attackers can circumvent the security mechanisms of these LLMs, breaching security constraints and causing harmful outputs. Focusing on multi-turn semantic jailbreak attacks, we observe that existing methods lack specific considerations for the role of multiturn dialogues in attack strategies, leading to semantic deviations during continuous interactions. Therefore, in this paper, we establish a theoretical foundation for multi-turn attacks by considering their support in jailbreak attacks, and based on this, propose a context-based contextual fusion black-box jailbreak attack method, named Context Fusion Attack (CFA). This method approach involves filtering and extracting key terms from the target, constructing contextual scenarios around these terms, dynamically integrating the target into the scenarios, replacing malicious key terms within the target, and thereby concealing the direct malicious intent. Through comparisons on various mainstream LLMs and red team datasets, we have demonstrated CFA's superior success rate, divergence, and harmfulness compared to other multi-turn attack strategies, particularly showcasing significant advantages on Llama3 and GPT-4.
Abstract:As machine learning gains prominence in various sectors of society for automated decision-making, concerns have risen regarding potential vulnerabilities in machine learning (ML) frameworks. Nevertheless, testing these frameworks is a daunting task due to their intricate implementation. Previous research on fuzzing ML frameworks has struggled to effectively extract input constraints and generate valid inputs, leading to extended fuzzing durations for deep execution or revealing the target crash. In this paper, we propose ConFL, a constraint-guided fuzzer for ML frameworks. ConFL automatically extracting constraints from kernel codes without the need for any prior knowledge. Guided by the constraints, ConFL is able to generate valid inputs that can pass the verification and explore deeper paths of kernel codes. In addition, we design a grouping technique to boost the fuzzing efficiency. To demonstrate the effectiveness of ConFL, we evaluated its performance mainly on Tensorflow. We find that ConFL is able to cover more code lines, and generate more valid inputs than state-of-the-art (SOTA) fuzzers. More importantly, ConFL found 84 previously unknown vulnerabilities in different versions of Tensorflow, all of which were assigned with new CVE ids, of which 3 were critical-severity and 13 were high-severity. We also extended ConFL to test PyTorch and Paddle, 7 vulnerabilities are found to date.