Abstract:Recently, Multimodal Large Language Models (MLLMs) have demonstrated their superior ability in understanding multimodal contents. However, they remain vulnerable to jailbreak attacks, which exploit weaknesses in their safety alignment to generate harmful responses. Previous studies categorize jailbreaks as successful or failed based on whether responses contain malicious content. However, given the stochastic nature of MLLM responses, this binary classification of an input's ability to jailbreak MLLMs is inappropriate. Derived from this viewpoint, we introduce jailbreak probability to quantify the jailbreak potential of an input, which represents the likelihood that MLLMs generated a malicious response when prompted with this input. We approximate this probability through multiple queries to MLLMs. After modeling the relationship between input hidden states and their corresponding jailbreak probability using Jailbreak Probability Prediction Network (JPPN), we use continuous jailbreak probability for optimization. Specifically, we propose Jailbreak-Probability-based Attack (JPA) that optimizes adversarial perturbations on inputs to maximize jailbreak probability. To counteract attacks, we also propose two defensive methods: Jailbreak-Probability-based Finetuning (JPF) and Jailbreak-Probability-based Defensive Noise (JPDN), which minimizes jailbreak probability in the MLLM parameters and input space, respectively. Extensive experiments show that (1) JPA yields improvements (up to 28.38\%) under both white and black box settings compared to previous methods with small perturbation bounds and few iterations. (2) JPF and JPDN significantly reduce jailbreaks by at most over 60\%. Both of the above results demonstrate the significance of introducing jailbreak probability to make nuanced distinctions among input jailbreak abilities.
Abstract:Transport phenomena (e.g., fluid flows) are governed by time-dependent partial differential equations (PDEs) describing mass, momentum, and energy conservation, and are ubiquitous in many engineering applications. However, deep learning architectures are fundamentally incompatible with the simulation of these PDEs. This paper clearly articulates and then solves this incompatibility. The local-dependency of generic transport PDEs implies that it only involves local information to predict the physical properties at a location in the next time step. However, the deep learning architecture will inevitably increase the scope of information to make such predictions as the number of layers increases, which can cause sluggish convergence and compromise generalizability. This paper aims to solve this problem by proposing a distributed data scoping method with linear time complexity to strictly limit the scope of information to predict the local properties. The numerical experiments over multiple physics show that our data scoping method significantly accelerates training convergence and improves the generalizability of benchmark models on large-scale engineering simulations. Specifically, over the geometries not included in the training data for heat transferring simulation, it can increase the accuracy of Convolutional Neural Networks (CNNs) by 21.7 \% and that of Fourier Neural Operators (FNOs) by 38.5 \% on average.
Abstract:High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, the complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. Additionally, many models report a low mean square error (MSE) across the entire domain (part). However, in each time step, most areas of the domain do not experience significant changes in temperature, except for the heat-affected zones near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This paper presents a data-driven model that uses Fourier Neural Operator to capture the local temperature evolution during the additive manufacturing process. In addition, the authors propose to evaluate the model using the $R^2$ metric, which provides a relative measure of the model's performance compared to using mean temperature as a prediction. The model was tested on numerical simulations based on the Discontinuous Galerkin Finite Element Method for the Direct Energy Deposition process, and the results demonstrate that the model achieves high fidelity as measured by $R^2$ and maintains generalizability to geometries that were not included in the training process.