Abstract:Additive manufacturing has revolutionized structural optimization by enhancing component strength and reducing material requirements. One approach used to achieve these improvements is the application of multi-lattice structures, where the macro-scale performance relies on the detailed design of mesostructural lattice elements. Many current approaches to designing such structures use data-driven design to generate multi-lattice transition regions, making use of machine learning models that are informed solely by the geometry of the mesostructures. However, it remains unclear if the integration of mechanical properties into the dataset used to train such machine learning models would be beneficial beyond using geometric data alone. To address this issue, this work implements and evaluates a hybrid geometry/property Variational Autoencoder (VAE) for generating multi-lattice transition regions. In our study, we found that hybrid VAEs demonstrate enhanced performance in maintaining stiffness continuity through transition regions, indicating their suitability for design tasks requiring smooth mechanical properties.
Abstract:High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, the complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. Additionally, many models report a low mean square error (MSE) across the entire domain (part). However, in each time step, most areas of the domain do not experience significant changes in temperature, except for the heat-affected zones near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This paper presents a data-driven model that uses Fourier Neural Operator to capture the local temperature evolution during the additive manufacturing process. In addition, the authors propose to evaluate the model using the $R^2$ metric, which provides a relative measure of the model's performance compared to using mean temperature as a prediction. The model was tested on numerical simulations based on the Discontinuous Galerkin Finite Element Method for the Direct Energy Deposition process, and the results demonstrate that the model achieves high fidelity as measured by $R^2$ and maintains generalizability to geometries that were not included in the training process.
Abstract:Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design in order to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.