Abstract:Current social bias benchmarks for Large Language Models (LLMs) primarily rely on pre-defined question formats like multiple-choice, limiting their ability to reflect the complexity and open-ended nature of real-world interactions. To address this gap, we extend an existing BBQ dataset introduced by incorporating fill-in-the-blank and short-answer question types, designed to evaluate biases in an open-ended setting. Our finding reveals that LLMs tend to produce responses that are more biased against certain protected attributes, like age and socio-economic status. On the other hand, these biased outputs produced by LLMs can serve as valuable contexts and chains of thought for debiasing. Our debiasing approach combined zero-shot, few-shot, and chain-of-thought could significantly reduce the level of bias to almost 0. We open-source our evaluation and debiasing code hoping to encourage further measurements and mitigation of bias and stereotype in LLMs.
Abstract:Rb-82 is a radioactive isotope widely used for cardiac PET imaging. Despite numerous benefits of 82-Rb, there are several factors that limits its image quality and quantitative accuracy. First, the short half-life of 82-Rb results in noisy dynamic frames. Low signal-to-noise ratio would result in inaccurate and biased image quantification. Noisy dynamic frames also lead to highly noisy parametric images. The noise levels also vary substantially in different dynamic frames due to radiotracer decay and short half-life. Existing denoising methods are not applicable for this task due to the lack of paired training inputs/labels and inability to generalize across varying noise levels. Second, 82-Rb emits high-energy positrons. Compared with other tracers such as 18-F, 82-Rb travels a longer distance before annihilation, which negatively affect image spatial resolution. Here, the goal of this study is to propose a self-supervised method for simultaneous (1) noise-aware dynamic image denoising and (2) positron range correction for 82-Rb cardiac PET imaging. Tested on a series of PET scans from a cohort of normal volunteers, the proposed method produced images with superior visual quality. To demonstrate the improvement in image quantification, we compared image-derived input functions (IDIFs) with arterial input functions (AIFs) from continuous arterial blood samples. The IDIF derived from the proposed method led to lower AUC differences, decreasing from 11.09% to 7.58% on average, compared to the original dynamic frames. The proposed method also improved the quantification of myocardium blood flow (MBF), as validated against 15-O-water scans, with mean MBF differences decreased from 0.43 to 0.09, compared to the original dynamic frames. We also conducted a generalizability experiment on 37 patient scans obtained from a different country using a different scanner.
Abstract:This review aims to systematically assess the current status and prospects of artificial intelligence (AI) in the rehabilitation management of patients with schizophrenia and their impact on the rehabilitation process. We selected 70 studies from 2012 to the present, focusing on application, technology categories, products, and data types of machine learning, deep learning, reinforcement learning, and other technologies in mental health interventions and management. The results indicate that AI can be widely used in symptom monitoring, relapse risk prediction, and rehabilitation treatment by analyzing ecological momentary assessment, behavioral, and speech data. This review further explores the potential challenges and future directions of emerging products, technologies, and analytical methods based on AI, such as social media analysis, serious games, and large language models in rehabilitation. In summary, this study systematically reviews the application status of AI in schizophrenia rehabilitation management and provides valuable insights and recommendations for future research paths.
Abstract:As machine learning gains prominence in various sectors of society for automated decision-making, concerns have risen regarding potential vulnerabilities in machine learning (ML) frameworks. Nevertheless, testing these frameworks is a daunting task due to their intricate implementation. Previous research on fuzzing ML frameworks has struggled to effectively extract input constraints and generate valid inputs, leading to extended fuzzing durations for deep execution or revealing the target crash. In this paper, we propose ConFL, a constraint-guided fuzzer for ML frameworks. ConFL automatically extracting constraints from kernel codes without the need for any prior knowledge. Guided by the constraints, ConFL is able to generate valid inputs that can pass the verification and explore deeper paths of kernel codes. In addition, we design a grouping technique to boost the fuzzing efficiency. To demonstrate the effectiveness of ConFL, we evaluated its performance mainly on Tensorflow. We find that ConFL is able to cover more code lines, and generate more valid inputs than state-of-the-art (SOTA) fuzzers. More importantly, ConFL found 84 previously unknown vulnerabilities in different versions of Tensorflow, all of which were assigned with new CVE ids, of which 3 were critical-severity and 13 were high-severity. We also extended ConFL to test PyTorch and Paddle, 7 vulnerabilities are found to date.
Abstract:Facial expression is an essential factor in conveying human emotional states and intentions. Although remarkable advancement has been made in facial expression recognition (FER) task, challenges due to large variations of expression patterns and unavoidable data uncertainties still remain. In this paper, we propose mid-level representation enhancement (MRE) and graph embedded uncertainty suppressing (GUS) addressing these issues. On one hand, MRE is introduced to avoid expression representation learning being dominated by a limited number of highly discriminative patterns. On the other hand, GUS is introduced to suppress the feature ambiguity in the representation space. The proposed method not only has stronger generalization capability to handle different variations of expression patterns but also more robustness to capture expression representations. Experimental evaluation on Aff-Wild2 have verified the effectiveness of the proposed method.
Abstract:In nuclear imaging, limited resolution causes partial volume effects (PVEs) that affect image sharpness and quantitative accuracy. Partial volume correction (PVC) methods incorporating high-resolution anatomical information from CT or MRI have been demonstrated to be effective. However, such anatomical-guided methods typically require tedious image registration and segmentation steps. Accurately segmented organ templates are also hard to obtain, particularly in cardiac SPECT imaging, due to the lack of hybrid SPECT/CT scanners with high-end CT and associated motion artifacts. Slight mis-registration/mis-segmentation would result in severe degradation in image quality after PVC. In this work, we develop a deep-learning-based method for fast cardiac SPECT PVC without anatomical information and associated organ segmentation. The proposed network involves a densely-connected multi-dimensional dynamic mechanism, allowing the convolutional kernels to be adapted based on the input images, even after the network is fully trained. Intramyocardial blood volume (IMBV) is introduced as an additional clinical-relevant loss function for network optimization. The proposed network demonstrated promising performance on 28 canine studies acquired on a GE Discovery NM/CT 570c dedicated cardiac SPECT scanner with a 64-slice CT using Technetium-99m-labeled red blood cells. This work showed that the proposed network with densely-connected dynamic mechanism produced superior results compared with the same network without such mechanism. Results also showed that the proposed network without anatomical information could produce images with statistically comparable IMBV measurements to the images generated by anatomical-guided PVC methods, which could be helpful in clinical translation.
Abstract:The frequency-based method is the most commonly used method for measuring cable tension. However, the calculation formulas for the conventional frequency-based method are generally based on the ideally hinged or fixed boundary conditions without a comprehensive consideration of the inclination angle, sag-extensibility, and flexural stiffness of cables, leading to a significant error in cable tension identification. This study aimed to propose a frequency-based method of cable tension identification considering the complex boundary conditions at the two ends of cables using the particle swarm optimization (PSO) algorithm. First, the refined stay cable model was established considering the inclination angle, flexural stiffness, and sag-extensibility, as well as the rotational constraint stiffness and lateral support stiffness for the unknown boundaries of cables. The vibration mode equation of the stay cable model was discretized and solved using the finite difference method. Then, a multiparameter identification method based on the PSO algorithm was proposed. This method was able to identify the tension, flexural stiffness, axial stiffness, boundary rotational constraint stiffness, and boundary lateral support stiffness according to the measured multiorder frequencies in a synchronous manner. The feasibility and accuracy of this method were validated through numerical cases. Finally, the proposed approach was applied to the tension identification of the anchor span strands of a suspension bridge (Jindong Bridge) in China. The results of cable tension identification using the proposed method and the existing methods discussed in previous studies were compared with the on-site pressure ring measurement results. The comparison showed that the proposed approach had a high accuracy in cable tension identification.
Abstract:Offline reinforcement learning (RL) tries to learn the near-optimal policy with recorded offline experience without online exploration. Current offline RL research includes: 1) generative modeling, i.e., approximating a policy using fixed data; and 2) learning the state-action value function. While most research focuses on the state-action function part through reducing the bootstrapping error in value function approximation induced by the distribution shift of training data, the effects of error propagation in generative modeling have been neglected. In this paper, we analyze the error in generative modeling. We propose AQL (action-conditioned Q-learning), a residual generative model to reduce policy approximation error for offline RL. We show that our method can learn more accurate policy approximations in different benchmark datasets. In addition, we show that the proposed offline RL method can learn more competitive AI agents in complex control tasks under the multiplayer online battle arena (MOBA) game Honor of Kings.
Abstract:MOBA games, e.g., Honor of Kings, League of Legends, and Dota 2, pose grand challenges to AI systems such as multi-agent, enormous state-action space, complex action control, etc. Developing AI for playing MOBA games has raised much attention accordingly. However, existing work falls short in handling the raw game complexity caused by the explosion of agent combinations, i.e., lineups, when expanding the hero pool in case that OpenAI's Dota AI limits the play to a pool of only 17 heroes. As a result, full MOBA games without restrictions are far from being mastered by any existing AI system. In this paper, we propose a MOBA AI learning paradigm that methodologically enables playing full MOBA games with deep reinforcement learning. Specifically, we develop a combination of novel and existing learning techniques, including curriculum self-play learning, policy distillation, off-policy adaption, multi-head value estimation, and Monte-Carlo tree-search, in training and playing a large pool of heroes, meanwhile addressing the scalability issue skillfully. Tested on Honor of Kings, a popular MOBA game, we show how to build superhuman AI agents that can defeat top esports players. The superiority of our AI is demonstrated by the first large-scale performance test of MOBA AI agent in the literature.
Abstract:The inverse design of metamaterials is difficult due to a high-dimensional topological design space and presence of multiple local optima. Computational cost is even more demanding for design of multiscale metamaterial systems with aperiodic microstructures and spatially-varying or functionally gradient properties. Despite the growing interest in applying data-driven methods to address this hurdle, current methods either only focus on microstructure generation or adopt an unscalable framework for the multiscale design. In this study, we propose a novel data-driven metamaterial design framework based on deep generative modeling. A deep neural network model consisting of a variational autoencoder (VAE) and a regressor for property prediction is trained on a large metamaterial database to map complex microstructures into a low-dimensional, continuous and organized latent space. Our study shows several advantages of the VAE based generative model. First, the latent space of VAE provides a distance metric to measure shape similarity, enabling interpolation between microstructures and encoding meaningful patterns of variation in geometries and properties. For microstructure design, the tuning of mechanical properties and complex manipulations of microstructures are easily achieved by simple vector operations in the latent space. Second, the vector operation can be further extended to form metamaterial families with controlled gradation of mechanical properties. Third, for multiscale metamaterial systems design, a diverse set of microstructures can be rapidly generated based on target properties at different locations and then assembled by an efficient graph-based optimization method to ensure compatibility between adjacent microstructures. We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems that achieve desired distortion behaviors.