Abstract:MOBA games, e.g., Honor of Kings, League of Legends, and Dota 2, pose grand challenges to AI systems such as multi-agent, enormous state-action space, complex action control, etc. Developing AI for playing MOBA games has raised much attention accordingly. However, existing work falls short in handling the raw game complexity caused by the explosion of agent combinations, i.e., lineups, when expanding the hero pool in case that OpenAI's Dota AI limits the play to a pool of only 17 heroes. As a result, full MOBA games without restrictions are far from being mastered by any existing AI system. In this paper, we propose a MOBA AI learning paradigm that methodologically enables playing full MOBA games with deep reinforcement learning. Specifically, we develop a combination of novel and existing learning techniques, including curriculum self-play learning, policy distillation, off-policy adaption, multi-head value estimation, and Monte-Carlo tree-search, in training and playing a large pool of heroes, meanwhile addressing the scalability issue skillfully. Tested on Honor of Kings, a popular MOBA game, we show how to build superhuman AI agents that can defeat top esports players. The superiority of our AI is demonstrated by the first large-scale performance test of MOBA AI agent in the literature.
Abstract:StarCraft, one of the most difficult esport games with long-standing history of professional tournaments, has attracted generations of players and fans, and also, intense attentions in artificial intelligence research. Recently, Google's DeepMind announced AlphaStar, a grandmaster level AI in StarCraft II. In this paper, we introduce a new AI agent, named TStarBot-X, that is trained under limited computation resources and can play competitively with expert human players. TStarBot-X takes advantage of important techniques introduced in AlphaStar, and also benefits from substantial innovations including new league training methods, novel multi-agent roles, rule-guided policy search, lightweight neural network architecture, and importance sampling in imitation learning, etc. We show that with limited computation resources, a faithful reimplementation of AlphaStar can not succeed and the proposed techniques are necessary to ensure TStarBot-X's competitive performance. We reveal all technical details that are complementary to those mentioned in AlphaStar, showing the most sensitive parts in league training, reinforcement learning and imitation learning that affect the performance of the agents. Most importantly, this is an open-sourced study that all codes and resources (including the trained model parameters) are publicly accessible via https://github.com/tencent-ailab/tleague_projpage We expect this study could be beneficial for both academic and industrial future research in solving complex problems like StarCraft, and also, might provide a sparring partner for all StarCraft II players and other AI agents.
Abstract:We study the reinforcement learning problem of complex action control in the Multi-player Online Battle Arena (MOBA) 1v1 games. This problem involves far more complicated state and action spaces than those of traditional 1v1 games, such as Go and Atari series, which makes it very difficult to search any policies with human-level performance. In this paper, we present a deep reinforcement learning framework to tackle this problem from the perspectives of both system and algorithm. Our system is of low coupling and high scalability, which enables efficient explorations at large scale. Our algorithm includes several novel strategies, including control dependency decoupling, action mask, target attention, and dual-clip PPO, with which our proposed actor-critic network can be effectively trained in our system. Tested on the MOBA game Honor of Kings, the trained AI agents can defeat top professional human players in full 1v1 games.