Abstract:Scientific discovery pipelines typically involve complex, rigid, and time-consuming processes, from data preparation to analyzing and interpreting findings. Recent advances in AI have the potential to transform such pipelines in a way that domain experts can focus on interpreting and understanding findings, rather than debugging rigid pipelines or manually annotating data. As part of an active collaboration between data science/AI researchers and behavioral neuroscientists, we showcase an example AI-enhanced pipeline, specifically designed to transform and accelerate the way that the domain experts in the team are able to gain insights out of experimental data. The application at hand is in the domain of behavioral neuroscience, studying fear generalization in mice, an important problem whose progress can advance our understanding of clinically significant and often debilitating conditions such as PTSD (Post-Traumatic Stress Disorder). We identify the emerging paradigm of "In-Context Learning" (ICL) as a suitable interface for domain experts to automate parts of their pipeline without the need for or familiarity with AI model training and fine-tuning, and showcase its remarkable efficacy in data preparation and pattern interpretation. Also, we introduce novel AI-enhancements to tensor decomposition model, which allows for more seamless pattern discovery from the heterogeneous data in our application. We thoroughly evaluate our proposed pipeline experimentally, showcasing its superior performance compared to what is standard practice in the domain, as well as against reasonable ML baselines that do not fall under the ICL paradigm, to ensure that we are not compromising performance in our quest for a seamless and easy-to-use interface for domain experts. Finally, we demonstrate effective discovery, with results validated by the domain experts in the team.
Abstract:We propose TopoFlow (Topography-aware pollutant Flow learning), a physics-guided neural network for efficient, high-resolution air quality prediction. To explicitly embed physical processes into the learning framework, we identify two critical factors governing pollutant dynamics: topography and wind direction. Complex terrain can channel, block, and trap pollutants, while wind acts as a primary driver of their transport and dispersion. Building on these insights, TopoFlow leverages a vision transformer architecture with two novel mechanisms: topography-aware attention, which explicitly models terrain-induced flow patterns, and wind-guided patch reordering, which aligns spatial representations with prevailing wind directions. Trained on six years of high-resolution reanalysis data assimilating observations from over 1,400 surface monitoring stations across China, TopoFlow achieves a PM2.5 RMSE of 9.71 ug/m3, representing a 71-80% improvement over operational forecasting systems and a 13% improvement over state-of-the-art AI baselines. Forecast errors remain well below China's 24-hour air quality threshold of 75 ug/m3 (GB 3095-2012), enabling reliable discrimination between clean and polluted conditions. These performance gains are consistent across all four major pollutants and forecast lead times from 12 to 96 hours, demonstrating that principled integration of physical knowledge into neural networks can fundamentally advance air quality prediction.
Abstract:Railway crossings present complex safety challenges where driver behavior varies by location, time, and conditions. Traditional approaches analyze crossings individually, limiting the ability to identify shared behavioral patterns across locations. We propose a multi-view tensor decomposition framework that captures behavioral similarities across three temporal phases: Approach (warning activation to gate lowering), Waiting (gates down to train passage), and Clearance (train passage to gate raising). We analyze railway crossing videos from multiple locations using TimeSformer embeddings to represent each phase. By constructing phase-specific similarity matrices and applying non-negative symmetric CP decomposition, we discover latent behavioral components with distinct temporal signatures. Our tensor analysis reveals that crossing location appears to be a stronger determinant of behavior patterns than time of day, and that approach-phase behavior provides particularly discriminative signatures. Visualization of the learned component space confirms location-based clustering, with certain crossings forming distinct behavioral clusters. This automated framework enables scalable pattern discovery across multiple crossings, providing a foundation for grouping locations by behavioral similarity to inform targeted safety interventions.
Abstract:While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Local railway committees need timely situational awareness after highway-rail grade crossing incidents, yet official Federal Railroad Administration (FRA) investigations can take days to weeks. We present a demo system that populates Highway-Rail Grade Crossing Incident Data (Form 57) from news in real time. Our approach addresses two core challenges: the form is visually irregular and semantically dense, and news is noisy. To solve these problems, we design a pipeline that first converts Form 57 into a JSON schema using a vision language model with sample aggregation, and then performs grouped question answering following the intent of the form layout to reduce ambiguity. In addition, we build an evaluation dataset by aligning scraped news articles with official FRA records and annotating retrievable information. We then assess our system against various alternatives in terms of information retrieval accuracy and coverage.
Abstract:The estimation of individual treatment effects (ITE) focuses on predicting the outcome changes that result from a change in treatment. A fundamental challenge in observational data is that while we need to infer outcome differences under alternative treatments, we can only observe each individual's outcome under a single treatment. Existing approaches address this limitation either by training with inferred pseudo-outcomes or by creating matched instance pairs. However, recent work has largely overlooked the potential impact of post-treatment variables on the outcome. This oversight prevents existing methods from fully capturing outcome variability, resulting in increased variance in counterfactual predictions. This paper introduces Pseudo-outcome Imputation with Post-treatment Variables for Counterfactual Regression (PIPCFR), a novel approach that incorporates post-treatment variables to improve pseudo-outcome imputation. We analyze the challenges inherent in utilizing post-treatment variables and establish a novel theoretical bound for ITE risk that explicitly connects post-treatment variables to ITE estimation accuracy. Unlike existing methods that ignore these variables or impose restrictive assumptions, PIPCFR learns effective representations that preserve informative components while mitigating bias. Empirical evaluations on both real-world and simulated datasets demonstrate that PIPCFR achieves significantly lower ITE errors compared to existing methods.
Abstract:This paper presents the Autonomous Driving Segment Anything Model (AD-SAM), a fine-tuned vision foundation model for semantic segmentation in autonomous driving (AD). AD-SAM extends the Segment Anything Model (SAM) with a dual-encoder and deformable decoder tailored to spatial and geometric complexity of road scenes. The dual-encoder produces multi-scale fused representations by combining global semantic context from SAM's pretrained Vision Transformer (ViT-H) with local spatial detail from a trainable convolutional deep learning backbone (i.e., ResNet-50). A deformable fusion module aligns heterogeneous features across scales and object geometries. The decoder performs progressive multi-stage refinement using deformable attention. Training is guided by a hybrid loss that integrates Focal, Dice, Lovasz-Softmax, and Surface losses, improving semantic class balance, boundary precision, and optimization stability. Experiments on the Cityscapes and Berkeley DeepDrive 100K (BDD100K) benchmarks show that AD-SAM surpasses SAM, Generalized SAM (G-SAM), and a deep learning baseline (DeepLabV3) in segmentation accuracy. It achieves 68.1 mean Intersection over Union (mIoU) on Cityscapes and 59.5 mIoU on BDD100K, outperforming SAM, G-SAM, and DeepLabV3 by margins of up to +22.9 and +19.2 mIoU in structured and diverse road scenes, respectively. AD-SAM demonstrates strong cross-domain generalization with a 0.87 retention score (vs. 0.76 for SAM), and faster, more stable learning dynamics, converging within 30-40 epochs, enjoying double the learning speed of benchmark models. It maintains 0.607 mIoU with only 1000 samples, suggesting data efficiency critical for reducing annotation costs. These results confirm that targeted architectural and optimization enhancements to foundation models enable reliable and scalable AD perception.
Abstract:Integration of diverse data will be a pivotal step towards improving scientific explorations in many disciplines. This work establishes a vision-language model (VLM) that encodes videos with text input in order to classify various behaviors of a mouse existing in and engaging with their environment. Importantly, this model produces a behavioral vector over time for each subject and for each session the subject undergoes. The output is a valuable dataset that few programs are able to produce with as high accuracy and with minimal user input. Specifically, we use the open-source Qwen2.5-VL model and enhance its performance through prompts, in-context learning (ICL) with labeled examples, and frame-level preprocessing. We found that each of these methods contributes to improved classification, and that combining them results in strong F1 scores across all behaviors, including rare classes like freezing and fleeing, without any model fine-tuning. Overall, this model will support interdisciplinary researchers studying mouse behavior by enabling them to integrate diverse behavioral features, measured across multiple time points and environments, into a comprehensive dataset that can address complex research questions.




Abstract:Vision language models (VLMs) excel in multimodal understanding but are prone to adversarial attacks. Existing defenses often demand costly retraining or significant architecture changes. We introduce a lightweight defense using tensor decomposition suitable for any pre-trained VLM, requiring no retraining. By decomposing and reconstructing vision encoder representations, it filters adversarial noise while preserving meaning. Experiments with CLIP on COCO and Flickr30K show improved robustness. On Flickr30K, it restores 12.3\% performance lost to attacks, raising Recall@1 accuracy from 7.5\% to 19.8\%. On COCO, it recovers 8.1\% performance, improving accuracy from 3.8\% to 11.9\%. Analysis shows Tensor Train decomposition with low rank (8-32) and low residual strength ($\alpha=0.1-0.2$) is optimal. This method is a practical, plug-and-play solution with minimal overhead for existing VLMs.