Abstract:While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Local railway committees need timely situational awareness after highway-rail grade crossing incidents, yet official Federal Railroad Administration (FRA) investigations can take days to weeks. We present a demo system that populates Highway-Rail Grade Crossing Incident Data (Form 57) from news in real time. Our approach addresses two core challenges: the form is visually irregular and semantically dense, and news is noisy. To solve these problems, we design a pipeline that first converts Form 57 into a JSON schema using a vision language model with sample aggregation, and then performs grouped question answering following the intent of the form layout to reduce ambiguity. In addition, we build an evaluation dataset by aligning scraped news articles with official FRA records and annotating retrievable information. We then assess our system against various alternatives in terms of information retrieval accuracy and coverage.
Abstract:The estimation of individual treatment effects (ITE) focuses on predicting the outcome changes that result from a change in treatment. A fundamental challenge in observational data is that while we need to infer outcome differences under alternative treatments, we can only observe each individual's outcome under a single treatment. Existing approaches address this limitation either by training with inferred pseudo-outcomes or by creating matched instance pairs. However, recent work has largely overlooked the potential impact of post-treatment variables on the outcome. This oversight prevents existing methods from fully capturing outcome variability, resulting in increased variance in counterfactual predictions. This paper introduces Pseudo-outcome Imputation with Post-treatment Variables for Counterfactual Regression (PIPCFR), a novel approach that incorporates post-treatment variables to improve pseudo-outcome imputation. We analyze the challenges inherent in utilizing post-treatment variables and establish a novel theoretical bound for ITE risk that explicitly connects post-treatment variables to ITE estimation accuracy. Unlike existing methods that ignore these variables or impose restrictive assumptions, PIPCFR learns effective representations that preserve informative components while mitigating bias. Empirical evaluations on both real-world and simulated datasets demonstrate that PIPCFR achieves significantly lower ITE errors compared to existing methods.
Abstract:This paper presents the Autonomous Driving Segment Anything Model (AD-SAM), a fine-tuned vision foundation model for semantic segmentation in autonomous driving (AD). AD-SAM extends the Segment Anything Model (SAM) with a dual-encoder and deformable decoder tailored to spatial and geometric complexity of road scenes. The dual-encoder produces multi-scale fused representations by combining global semantic context from SAM's pretrained Vision Transformer (ViT-H) with local spatial detail from a trainable convolutional deep learning backbone (i.e., ResNet-50). A deformable fusion module aligns heterogeneous features across scales and object geometries. The decoder performs progressive multi-stage refinement using deformable attention. Training is guided by a hybrid loss that integrates Focal, Dice, Lovasz-Softmax, and Surface losses, improving semantic class balance, boundary precision, and optimization stability. Experiments on the Cityscapes and Berkeley DeepDrive 100K (BDD100K) benchmarks show that AD-SAM surpasses SAM, Generalized SAM (G-SAM), and a deep learning baseline (DeepLabV3) in segmentation accuracy. It achieves 68.1 mean Intersection over Union (mIoU) on Cityscapes and 59.5 mIoU on BDD100K, outperforming SAM, G-SAM, and DeepLabV3 by margins of up to +22.9 and +19.2 mIoU in structured and diverse road scenes, respectively. AD-SAM demonstrates strong cross-domain generalization with a 0.87 retention score (vs. 0.76 for SAM), and faster, more stable learning dynamics, converging within 30-40 epochs, enjoying double the learning speed of benchmark models. It maintains 0.607 mIoU with only 1000 samples, suggesting data efficiency critical for reducing annotation costs. These results confirm that targeted architectural and optimization enhancements to foundation models enable reliable and scalable AD perception.
Abstract:Integration of diverse data will be a pivotal step towards improving scientific explorations in many disciplines. This work establishes a vision-language model (VLM) that encodes videos with text input in order to classify various behaviors of a mouse existing in and engaging with their environment. Importantly, this model produces a behavioral vector over time for each subject and for each session the subject undergoes. The output is a valuable dataset that few programs are able to produce with as high accuracy and with minimal user input. Specifically, we use the open-source Qwen2.5-VL model and enhance its performance through prompts, in-context learning (ICL) with labeled examples, and frame-level preprocessing. We found that each of these methods contributes to improved classification, and that combining them results in strong F1 scores across all behaviors, including rare classes like freezing and fleeing, without any model fine-tuning. Overall, this model will support interdisciplinary researchers studying mouse behavior by enabling them to integrate diverse behavioral features, measured across multiple time points and environments, into a comprehensive dataset that can address complex research questions.
Abstract:Diffusion and flow matching (FM) models have achieved remarkable progress in speech enhancement (SE), yet their dependence on multi-step generation is computationally expensive and vulnerable to discretization errors. Recent advances in one-step generative modeling, particularly MeanFlow, provide a promising alternative by reformulating dynamics through average velocity fields. In this work, we present COSE, a one-step FM framework tailored for SE. To address the high training overhead of Jacobian-vector product (JVP) computations in MeanFlow, we introduce a velocity composition identity to compute average velocity efficiently, eliminating expensive computation while preserving theoretical consistency and achieving competitive enhancement quality. Extensive experiments on standard benchmarks show that COSE delivers up to 5x faster sampling and reduces training cost by 40%, all without compromising speech quality. Code is available at https://github.com/ICDM-UESTC/COSE.




Abstract:Vision language models (VLMs) excel in multimodal understanding but are prone to adversarial attacks. Existing defenses often demand costly retraining or significant architecture changes. We introduce a lightweight defense using tensor decomposition suitable for any pre-trained VLM, requiring no retraining. By decomposing and reconstructing vision encoder representations, it filters adversarial noise while preserving meaning. Experiments with CLIP on COCO and Flickr30K show improved robustness. On Flickr30K, it restores 12.3\% performance lost to attacks, raising Recall@1 accuracy from 7.5\% to 19.8\%. On COCO, it recovers 8.1\% performance, improving accuracy from 3.8\% to 11.9\%. Analysis shows Tensor Train decomposition with low rank (8-32) and low residual strength ($\alpha=0.1-0.2$) is optimal. This method is a practical, plug-and-play solution with minimal overhead for existing VLMs.
Abstract:Powerful artificial intelligence (AI) tools that have emerged in recent years -- including large language models, automated coding assistants, and advanced image and speech generation technologies -- are the result of monumental human achievements. These breakthroughs reflect mastery across multiple technical disciplines and the resolution of significant technological challenges. However, some of the most profound challenges may still lie ahead. These challenges are not purely technical but pertain to the fair and responsible use of AI in ways that genuinely improve the global human condition. This article explores one promising application aligned with that vision: the use of AI tools to facilitate and enhance education, with a specific focus on signal processing (SP). It presents two interrelated perspectives: identifying and addressing technical limitations, and applying AI tools in practice to improve educational experiences. Primers are provided on several core technical issues that arise when using AI in educational settings, including how to ensure fairness and inclusivity, handle hallucinated outputs, and achieve efficient use of resources. These and other considerations -- such as transparency, explainability, and trustworthiness -- are illustrated through the development of an immersive, structured, and reliable "smart textbook." The article serves as a resource for researchers and educators seeking to advance AI's role in engineering education.
Abstract:White Light Imaging (WLI) and Narrow Band Imaging (NBI) are the two main colonoscopic modalities for polyp classification. While NBI, as optical chromoendoscopy, offers valuable vascular details, WLI remains the most common and often the only available modality in resource-limited settings. However, WLI-based methods typically underperform, limiting their clinical applicability. Existing approaches transfer knowledge from NBI to WLI through global feature alignment but often rely on cropped lesion regions, which are susceptible to detection errors and neglect contextual and subtle diagnostic cues. To address this, this paper proposes a novel holistic classification framework that leverages full-image diagnosis without requiring polyp localization. The key innovation lies in the Alignment-free Dense Distillation (ADD) module, which enables fine-grained cross-domain knowledge distillation regardless of misalignment between WLI and NBI images. Without resorting to explicit image alignment, ADD learns pixel-wise cross-domain affinities to establish correspondences between feature maps, guiding the distillation along the most relevant pixel connections. To further enhance distillation reliability, ADD incorporates Class Activation Mapping (CAM) to filter cross-domain affinities, ensuring the distillation path connects only those semantically consistent regions with equal contributions to polyp diagnosis. Extensive results on public and in-house datasets show that our method achieves state-of-the-art performance, relatively outperforming the other approaches by at least 2.5% and 16.2% in AUC, respectively. Code is available at: https://github.com/Huster-Hq/ADD.