Abstract:Despite significant advancements in general-purpose AI agents, several challenges still hinder their practical application in real-world scenarios. First, the limited planning capabilities of Large Language Models (LLM) restrict AI agents from effectively solving complex tasks that require long-horizon planning. Second, general-purpose AI agents struggle to efficiently utilize domain-specific knowledge and human expertise. In this paper, we introduce the Standard Operational Procedure-guided Agent (SOP-agent), a novel framework for constructing domain-specific agents through pseudocode-style Standard Operational Procedures (SOPs) written in natural language. Formally, we represent a SOP as a decision graph, which is traversed to guide the agent in completing tasks specified by the SOP. We conduct extensive experiments across tasks in multiple domains, including decision-making, search and reasoning, code generation, data cleaning, and grounded customer service. The SOP-agent demonstrates excellent versatility, achieving performance superior to general-purpose agent frameworks and comparable to domain-specific agent systems. Additionally, we introduce the Grounded Customer Service Benchmark, the first benchmark designed to evaluate the grounded decision-making capabilities of AI agents in customer service scenarios based on SOPs.
Abstract:As data retrieval demands become increasingly complex, traditional search methods often fall short in addressing nuanced and conceptual queries. Vector similarity search has emerged as a promising technique for finding semantically similar information efficiently. However, its effectiveness diminishes when handling intricate queries with contextual nuances. This paper explores a hybrid approach combining vector similarity search with Large Language Models (LLMs) to enhance search accuracy and relevance. The proposed two-step solution first employs vector similarity search to shortlist potential matches, followed by an LLM for context-aware ranking of the results. Experiments on structured datasets demonstrate that while vector similarity search alone performs well for straightforward queries, the LLM-assisted approach excels in processing complex queries involving constraints, negations, or conceptual requirements. By leveraging the natural language understanding capabilities of LLMs, this method improves the accuracy of search results for complex tasks without sacrificing efficiency. We also discuss real-world applications and propose directions for future research to refine and scale this technique for diverse datasets and use cases. Original article: https://engineering.grab.com/llm-assisted-vector-similarity-search