Abstract:Current fine-grained classification research mainly concentrates on fine-grained feature learning, but in real-world applications, the bigger issue often lies in the data. Fine-grained data annotation is challenging, and the features and semantics are highly diverse and frequently changing, making traditional methods less effective in real-world scenarios. Although some studies have provided potential solutions to this issue, most are limited to making use of limited supervised information. In this paper, we propose a novel learning paradigm to break barriers in fine-grained classification. It enables the model to learn beyond the standard training phase and benefit from cost-free data encountered during system operation. On this basis, an efficient EXPloring and EXPloiting strategy and method (EXP2) is designed. Thereinto, before the final classification results are obtained, representative inference data samples are explored according to class templates and exploited to optimize classifiers. Experimental results demonstrate the general effectiveness of EXP2.
Abstract:Recent advances in NeRF inpainting have leveraged pretrained diffusion models to enhance performance. However, these methods often yield suboptimal results due to their ineffective utilization of 2D diffusion priors. The limitations manifest in two critical aspects: the inadequate capture of geometric information by pretrained diffusion models and the suboptimal guidance provided by existing Score Distillation Sampling (SDS) methods. To address these problems, we introduce GB-NeRF, a novel framework that enhances NeRF inpainting through improved utilization of 2D diffusion priors. Our approach incorporates two key innovations: a fine-tuning strategy that simultaneously learns appearance and geometric priors and a specialized normal distillation loss that integrates these geometric priors into NeRF inpainting. We propose a technique called Balanced Score Distillation (BSD) that surpasses existing methods such as Score Distillation (SDS) and the improved version, Conditional Score Distillation (CSD). BSD offers improved inpainting quality in appearance and geometric aspects. Extensive experiments show that our method provides superior appearance fidelity and geometric consistency compared to existing approaches.
Abstract:Cognitive diagnosis (CD) utilizes students' existing studying records to estimate their mastery of unknown knowledge concepts, which is vital for evaluating their learning abilities. Accurate CD is extremely challenging because CD is associated with complex relationships and mechanisms among students, knowledge concepts, studying records, etc. However, existing approaches loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for CD. Different from them, this paper innovatively proposes an End-to-end Graph Neural Networks-based Cognitive Diagnosis (EGNN-CD) model. EGNN-CD consists of three main parts: knowledge concept network (KCN), graph neural networks-based feature extraction (GNNFE), and cognitive ability prediction (CAP). First, KCN constructs CD-related interaction by comprehensively extracting physical information from students, exercises, and knowledge concepts. Second, a four-channel GNNFE is designed to extract high-order and individual features from the constructed KCN. Finally, CAP employs a multi-layer perceptron to fuse the extracted features to predict students' learning abilities in an end-to-end learning way. With such designs, the feature extractions and fusions are guaranteed to be comprehensive and optimal for CD. Extensive experiments on three real datasets demonstrate that our EGNN-CD achieves significantly higher accuracy than state-of-the-art models in CD.
Abstract:Conventional approaches for video captioning leverage a variety of offline-extracted features to generate captions. Despite the availability of various offline-feature-extractors that offer diverse information from different perspectives, they have several limitations due to fixed parameters. Concretely, these extractors are solely pre-trained on image/video comprehension tasks, making them less adaptable to video caption datasets. Additionally, most of these extractors only capture features prior to the classifier of the pre-training task, ignoring a significant amount of valuable shallow information. Furthermore, employing multiple offline-features may introduce redundant information. To address these issues, we propose an end-to-end encoder-decoder-based network (EVC-MF) for video captioning, which efficiently utilizes multi-scale visual and textual features to generate video descriptions. Specifically, EVC-MF consists of three modules. Firstly, instead of relying on multiple feature extractors, we directly feed video frames into a transformer-based network to obtain multi-scale visual features and update feature extractor parameters. Secondly, we fuse the multi-scale features and input them into a masked encoder to reduce redundancy and encourage learning useful features. Finally, we utilize an enhanced transformer-based decoder, which can efficiently leverage shallow textual information, to generate video descriptions. To evaluate our proposed model, we conduct extensive experiments on benchmark datasets. The results demonstrate that EVC-MF yields competitive performance compared with the state-of-theart methods.
Abstract:With the rapid development of machine vision technology in recent years, many researchers have begun to focus on feature compression that is better suited for machine vision tasks. The target of feature compression is deep features, which arise from convolution in the middle layer of a pre-trained convolutional neural network. However, due to the large volume of data and high level of abstraction of deep features, their application is primarily limited to machine-centric scenarios, which poses significant constraints in situations requiring human-computer interaction. This paper investigates features and textures and proposes a texture-guided feature compression strategy based on their characteristics. Specifically, the strategy comprises feature layers and texture layers. The feature layers serve the machine, including a feature selection module and a feature reconstruction network. With the assistance of texture images, they selectively compress and transmit channels relevant to visual tasks, reducing feature data while providing high-quality features for the machine. The texture layers primarily serve humans and consist of an image reconstruction network. This image reconstruction network leverages features and texture images to reconstruct preview images for humans. Our method fully exploits the characteristics of texture and features. It eliminates feature redundancy, reconstructs high-quality preview images for humans, and supports decision-making. The experimental results demonstrate excellent performance when employing our proposed method to compress the deep features.
Abstract:Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction sequences. Recently, many research efforts have been devoted to attenuate the influence of noisy items in sequences by either assigning them with lower attention weights or discarding them directly. The major limitation of these methods is that the former would still prone to overfit noisy items while the latter may overlook informative items. To the end, in this paper, we propose a novel model named Multi-level Sequence Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation. To be specific, we first introduce a target-aware user interest extractor to simultaneously capture users' long and short term interest with the guidance of target items. Then, we develop a multi-level sequence denoising module to alleviate the impact of noisy items by employing both soft and hard signal denoising strategies. Additionally, we extend existing curriculum learning by simulating the learning pattern of human beings. It is worth noting that our proposed model can be seamlessly integrated with a majority of existing recommendation models and significantly boost their effectiveness. Experimental studies on five public datasets are conducted and the results demonstrate that the proposed MSDCCL is superior to the state-of-the-art baselines. The source code is publicly available at https://github.com/lalunex/MSDCCL/tree/main.
Abstract:Diffusion models, known for their powerful generative capabilities, play a crucial role in addressing real-world super-resolution challenges. However, these models often focus on improving local textures while neglecting the impacts of global degradation, which can significantly reduce semantic fidelity and lead to inaccurate reconstructions and suboptimal super-resolution performance. To address this issue, we introduce a novel two-stage, degradation-aware framework that enhances the diffusion model's ability to recognize content and degradation in low-resolution images. In the first stage, we employ unsupervised contrastive learning to obtain representations of image degradations. In the second stage, we integrate a degradation-aware module into a simplified ControlNet, enabling flexible adaptation to various degradations based on the learned representations. Furthermore, we decompose the degradation-aware features into global semantics and local details branches, which are then injected into the diffusion denoising module to modulate the target generation. Our method effectively recovers semantically precise and photorealistic details, particularly under significant degradation conditions, demonstrating state-of-the-art performance across various benchmarks. Codes will be released at https://github.com/bichunyang419/DeeDSR.
Abstract:Interactions among large number of entities is naturally high-dimensional and incomplete (HDI) in many big data related tasks. Behavioral characteristics of users are hidden in these interactions, hence, effective representation of the HDI data is a fundamental task for understanding user behaviors. Latent factor analysis (LFA) model has proven to be effective in representing HDI data. The performance of an LFA model relies heavily on its training process, which is a non-convex optimization. It has been proven that incorporating local curvature and preprocessing gradients during its training process can lead to superior performance compared to LFA models built with first-order family methods. However, with the escalation of data volume, the feasibility of second-order algorithms encounters challenges. To address this pivotal issue, this paper proposes a mini-block diagonal hessian-free (Mini-Hes) optimization for building an LFA model. It leverages the dominant diagonal blocks in the generalized Gauss-Newton matrix based on the analysis of the Hessian matrix of LFA model and serves as an intermediary strategy bridging the gap between first-order and second-order optimization methods. Experiment results indicate that, with Mini-Hes, the LFA model outperforms several state-of-the-art models in addressing missing data estimation task on multiple real HDI datasets from recommender system. (The source code of Mini-Hes is available at https://github.com/Goallow/Mini-Hes)
Abstract:Few-shot class-incremental learning (FSCIL) aims at recognizing novel classes continually with limited novel class samples. A mainstream baseline for FSCIL is first to train the whole model in the base session, then freeze the feature extractor in the incremental sessions. Despite achieving high overall accuracy, most methods exhibit notably low accuracy for incremental classes. Some recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions, but they further cause the accuracy imbalance between past and current incremental classes. In this paper, we study the causes of such classification accuracy imbalance for FSCIL, and abstract them into a unified model bias problem. Based on the analyses, we propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes, which includes mapping ability stimulation, separately dual-feature classification, and self-optimizing classifiers. Extensive experiments on three widely-used FSCIL benchmark datasets show that our method significantly mitigates the model bias problem and achieves state-of-the-art performance.
Abstract:Human-object interaction (HOI) detection aims at detecting human-object pairs and predicting their interactions. However, the complexity of human behavior and the diverse contexts in which these interactions occur make it challenging. Intuitively, human-centric visual cues, such as the involved participants, the body language, and the surrounding environment, play crucial roles in shaping these interactions. These cues are particularly vital in interpreting unseen interactions. In this paper, we propose three prompts with VLM to generate human-centric visual cues within an image from multiple perspectives of humans. To capitalize on these rich Human-Centric Visual Cues, we propose a novel approach named HCVC for HOI detection. Particularly, we develop a transformer-based multimodal fusion module with multitower architecture to integrate visual cue features into the instance and interaction decoders. Our extensive experiments and analysis validate the efficacy of leveraging the generated human-centric visual cues for HOI detection. Notably, the experimental results indicate the superiority of the proposed model over the existing state-of-the-art methods on two widely used datasets.