Abstract:Current fine-grained classification research mainly concentrates on fine-grained feature learning, but in real-world applications, the bigger issue often lies in the data. Fine-grained data annotation is challenging, and the features and semantics are highly diverse and frequently changing, making traditional methods less effective in real-world scenarios. Although some studies have provided potential solutions to this issue, most are limited to making use of limited supervised information. In this paper, we propose a novel learning paradigm to break barriers in fine-grained classification. It enables the model to learn beyond the standard training phase and benefit from cost-free data encountered during system operation. On this basis, an efficient EXPloring and EXPloiting strategy and method (EXP2) is designed. Thereinto, before the final classification results are obtained, representative inference data samples are explored according to class templates and exploited to optimize classifiers. Experimental results demonstrate the general effectiveness of EXP2.