Abstract:Vision-language pre-training (VLP) models, trained on large-scale image-text pairs, have become widely used across a variety of downstream vision-and-language (V+L) tasks. This widespread adoption raises concerns about their vulnerability to adversarial attacks. Non-universal adversarial attacks, while effective, are often impractical for real-time online applications due to their high computational demands per data instance. Recently, universal adversarial perturbations (UAPs) have been introduced as a solution, but existing generator-based UAP methods are significantly time-consuming. To overcome the limitation, we propose a direct optimization-based UAP approach, termed DO-UAP, which significantly reduces resource consumption while maintaining high attack performance. Specifically, we explore the necessity of multimodal loss design and introduce a useful data augmentation strategy. Extensive experiments conducted on three benchmark VLP datasets, six popular VLP models, and three classical downstream tasks demonstrate the efficiency and effectiveness of DO-UAP. Specifically, our approach drastically decreases the time consumption by 23-fold while achieving a better attack performance.
Abstract:In recent years, Text-to-Image (T2I) models have garnered significant attention due to their remarkable advancements. However, security concerns have emerged due to their potential to generate inappropriate or Not-Safe-For-Work (NSFW) images. In this paper, inspired by the observation that texts with different semantics can lead to similar human perceptions, we propose an LLM-driven perception-guided jailbreak method, termed PGJ. It is a black-box jailbreak method that requires no specific T2I model (model-free) and generates highly natural attack prompts. Specifically, we propose identifying a safe phrase that is similar in human perception yet inconsistent in text semantics with the target unsafe word and using it as a substitution. The experiments conducted on six open-source models and commercial online services with thousands of prompts have verified the effectiveness of PGJ.
Abstract:We present an on-the-fly synthesis framework for Linear Temporal Logic over finite traces (LTLf) based on top-down deterministic automata construction. Existing approaches rely on constructing a complete Deterministic Finite Automaton (DFA) corresponding to the LTLf specification, a process with doubly exponential complexity relative to the formula size in the worst case. In this case, the synthesis procedure cannot be conducted until the entire DFA is constructed. This inefficiency is the main bottleneck of existing approaches. To address this challenge, we first present a method for converting LTLf into Transition-based DFA (TDFA) by directly leveraging LTLf semantics, incorporating intermediate results as direct components of the final automaton to enable parallelized synthesis and automata construction. We then explore the relationship between LTLf synthesis and TDFA games and subsequently develop an algorithm for performing LTLf synthesis using on-the-fly TDFA game solving. This algorithm traverses the state space in a global forward manner combined with a local backward method, along with the detection of strongly connected components. Moreover, we introduce two optimization techniques -- model-guided synthesis and state entailment -- to enhance the practical efficiency of our approach. Experimental results demonstrate that our on-the-fly approach achieves the best performance on the tested benchmarks and effectively complements existing tools and approaches.
Abstract:Universal adversarial perturbation (UAP), also known as image-agnostic perturbation, is a fixed perturbation map that can fool the classifier with high probabilities on arbitrary images, making it more practical for attacking deep models in the real world. Previous UAP methods generate a scale-fixed and texture-fixed perturbation map for all images, which ignores the multi-scale objects in images and usually results in a low fooling ratio. Since the widely used convolution neural networks tend to classify objects according to semantic information stored in local textures, it seems a reasonable and intuitive way to improve the UAP from the perspective of utilizing local contents effectively. In this work, we find that the fooling ratios significantly increase when we add a constraint to encourage a small-scale UAP map and repeat it vertically and horizontally to fill the whole image domain. To this end, we propose texture scale-constrained UAP (TSC-UAP), a simple yet effective UAP enhancement method that automatically generates UAPs with category-specific local textures that can fool deep models more easily. Through a low-cost operation that restricts the texture scale, TSC-UAP achieves a considerable improvement in the fooling ratio and attack transferability for both data-dependent and data-free UAP methods. Experiments conducted on two state-of-the-art UAP methods, eight popular CNN models and four classical datasets show the remarkable performance of TSC-UAP.
Abstract:The widespread use of diffusion methods enables the creation of highly realistic images on demand, thereby posing significant risks to the integrity and safety of online information and highlighting the necessity of DeepFake detection. Our analysis of features extracted by traditional image encoders reveals that both low-level and high-level features offer distinct advantages in identifying DeepFake images produced by various diffusion methods. Inspired by this finding, we aim to develop an effective representation that captures both low-level and high-level features to detect diffusion-based DeepFakes. To address the problem, we propose a text modality-oriented feature extraction method, termed TOFE. Specifically, for a given target image, the representation we discovered is a corresponding text embedding that can guide the generation of the target image with a specific text-to-image model. Experiments conducted across ten diffusion types demonstrate the efficacy of our proposed method.
Abstract:With the rising popularity of Large Language Models (LLMs), assessing their trustworthiness through security tasks has gained critical importance. Regarding the new task of universal goal hijacking, previous efforts have concentrated solely on optimization algorithms, overlooking the crucial role of the prompt. To fill this gap, we propose a universal goal hijacking method called POUGH that incorporates semantic-guided prompt processing strategies. Specifically, the method starts with a sampling strategy to select representative prompts from a candidate pool, followed by a ranking strategy that prioritizes the prompts. Once the prompts are organized sequentially, the method employs an iterative optimization algorithm to generate the universal fixed suffix for the prompts. Experiments conducted on four popular LLMs and ten types of target responses verified the effectiveness of our method.
Abstract:Co-salient object detection (CoSOD) aims to identify the common and salient (usually in the foreground) regions across a given group of images. Although achieving significant progress, state-of-the-art CoSODs could be easily affected by some adversarial perturbations, leading to substantial accuracy reduction. The adversarial perturbations can mislead CoSODs but do not change the high-level semantic information (e.g., concept) of the co-salient objects. In this paper, we propose a novel robustness enhancement framework by first learning the concept of the co-salient objects based on the input group images and then leveraging this concept to purify adversarial perturbations, which are subsequently fed to CoSODs for robustness enhancement. Specifically, we propose CosalPure containing two modules, i.e., group-image concept learning and concept-guided diffusion purification. For the first module, we adopt a pre-trained text-to-image diffusion model to learn the concept of co-salient objects within group images where the learned concept is robust to adversarial examples. For the second module, we map the adversarial image to the latent space and then perform diffusion generation by embedding the learned concept into the noise prediction function as an extra condition. Our method can effectively alleviate the influence of the SOTA adversarial attack containing different adversarial patterns, including exposure and noise. The extensive results demonstrate that our method could enhance the robustness of CoSODs significantly.
Abstract:In recent years, LiDAR-camera fusion models have markedly advanced 3D object detection tasks in autonomous driving. However, their robustness against common weather corruption such as fog, rain, snow, and sunlight in the intricate physical world remains underexplored. In this paper, we evaluate the robustness of fusion models from the perspective of fusion strategies on the corrupted dataset. Based on the evaluation, we further propose a concise yet practical fusion strategy to enhance the robustness of the fusion models, namely flexibly weighted fusing features from LiDAR and camera sources to adapt to varying weather scenarios. Experiments conducted on four types of fusion models, each with two distinct lightweight implementations, confirm the broad applicability and effectiveness of the approach.
Abstract:Machine learning is widely used to make decisions with societal impact such as bank loan approving, criminal sentencing, and resume filtering. How to ensure its fairness while maintaining utility is a challenging but crucial issue. Fairness is a complex and context-dependent concept with over 70 different measurement metrics. Since existing regulations are often vague in terms of which metric to use and different organizations may prefer different fairness metrics, it is important to have means of improving fairness comprehensively. Existing mitigation techniques often target at one specific fairness metric and have limitations in improving multiple notions of fairness simultaneously. In this work, we propose CFU (Comprehensive Fairness-Utility), a reinforcement learning-based framework, to efficiently improve the fairness-utility trade-off in machine learning classifiers. A comprehensive measurement that can simultaneously consider multiple fairness notions as well as utility is established, and new metrics are proposed based on an in-depth analysis of the relationship between different fairness metrics. The reward function of CFU is constructed with comprehensive measurement and new metrics. We conduct extensive experiments to evaluate CFU on 6 tasks, 3 machine learning models, and 15 fairness-utility measurements. The results demonstrate that CFU can improve the classifier on multiple fairness metrics without sacrificing its utility. It outperforms all state-of-the-art techniques and has witnessed a 37.5% improvement on average.
Abstract:The adversarial patch attack aims to fool image classifiers within a bounded, contiguous region of arbitrary changes, posing a real threat to computer vision systems (e.g., autonomous driving, content moderation, biometric authentication, medical imaging) in the physical world. To address this problem in a trustworthy way, proposals have been made for certified patch defenses that ensure the robustness of classification models and prevent future patch attacks from breaching the defense. State-of-the-art certified defenses can be compatible with any model architecture, as well as achieve high clean and certified accuracy. Although the methods are adaptive to arbitrary patch positions, they inevitably need to access the size of the adversarial patch, which is unreasonable and impractical in real-world attack scenarios. To improve the feasibility of the architecture-agnostic certified defense in a black-box setting (i.e., position and size of the patch are both unknown), we propose a novel two-stage Iterative Black-box Certified Defense method, termed IBCD.In the first stage, it estimates the patch size in a search-based manner by evaluating the size relationship between the patch and mask with pixel masking. In the second stage, the accuracy results are calculated by the existing white-box certified defense methods with the estimated patch size. The experiments conducted on two popular model architectures and two datasets verify the effectiveness and efficiency of IBCD.