Abstract:With the rapid development of embodied intelligence, locomotion control of quadruped robots on complex terrains has become a research hotspot. Unlike traditional locomotion control approaches focusing solely on velocity tracking, we pursue to balance the agility and robustness of quadruped robots on diverse and complex terrains. To this end, we propose an end-to-end deep reinforcement learning framework for posture-aware locomotion named PALo, which manages to handle simultaneous linear and angular velocity tracking and real-time adjustments of body height, pitch, and roll angles. In PALo, the locomotion control problem is formulated as a partially observable Markov decision process, and an asymmetric actor-critic architecture is adopted to overcome the sim-to-real challenge. Further, by incorporating customized training curricula, PALo achieves agile posture-aware locomotion control in simulated environments and successfully transfers to real-world settings without fine-tuning, allowing real-time control of the quadruped robot's locomotion and body posture across challenging terrains. Through in-depth experimental analysis, we identify the key components of PALo that contribute to its performance, further validating the effectiveness of the proposed method. The results of this study provide new possibilities for the low-level locomotion control of quadruped robots in higher dimensional command spaces and lay the foundation for future research on upper-level modules for embodied intelligence.
Abstract:In the rapidly evolving landscape of neural network security, the resilience of neural networks against bit-flip attacks (i.e., an attacker maliciously flips an extremely small amount of bits within its parameter storage memory system to induce harmful behavior), has emerged as a relevant area of research. Existing studies suggest that quantization may serve as a viable defense against such attacks. Recognizing the documented susceptibility of real-valued neural networks to such attacks and the comparative robustness of quantized neural networks (QNNs), in this work, we introduce BFAVerifier, the first verification framework designed to formally verify the absence of bit-flip attacks or to identify all vulnerable parameters in a sound and rigorous manner. BFAVerifier comprises two integral components: an abstraction-based method and an MILP-based method. Specifically, we first conduct a reachability analysis with respect to symbolic parameters that represent the potential bit-flip attacks, based on a novel abstract domain with a sound guarantee. If the reachability analysis fails to prove the resilience of such attacks, then we encode this verification problem into an equivalent MILP problem which can be solved by off-the-shelf solvers. Therefore, BFAVerifier is sound, complete, and reasonably efficient. We conduct extensive experiments, which demonstrate its effectiveness and efficiency across various network architectures, quantization bit-widths, and adversary capabilities.
Abstract:We present a framework for generating universal semantic embeddings of chemical elements to advance materials inference and discovery. This framework leverages ElementBERT, a domain-specific BERT-based natural language processing model trained on 1.29 million abstracts of alloy-related scientific papers, to capture latent knowledge and contextual relationships specific to alloys. These semantic embeddings serve as robust elemental descriptors, consistently outperforming traditional empirical descriptors with significant improvements across multiple downstream tasks. These include predicting mechanical and transformation properties, classifying phase structures, and optimizing materials properties via Bayesian optimization. Applications to titanium alloys, high-entropy alloys, and shape memory alloys demonstrate up to 23% gains in prediction accuracy. Our results show that ElementBERT surpasses general-purpose BERT variants by encoding specialized alloy knowledge. By bridging contextual insights from scientific literature with quantitative inference, our framework accelerates the discovery and optimization of advanced materials, with potential applications extending beyond alloys to other material classes.
Abstract:Despite their advances and success, real-world deep neural networks are known to be vulnerable to adversarial attacks. Universal adversarial perturbation, an input-agnostic attack, poses a serious threat for them to be deployed in security-sensitive systems. In this case, a single universal adversarial perturbation deceives the model on a range of clean inputs without requiring input-specific optimization, which makes it particularly threatening. In this work, we observe that universal adversarial perturbations usually lead to abnormal entropy spectrum in hidden layers, which suggests that the prediction is dominated by a small number of ``feature'' in such cases (rather than democratically by many features). Inspired by this, we propose an efficient yet effective defense method for mitigating UAPs called \emph{Democratic Training} by performing entropy-based model enhancement to suppress the effect of the universal adversarial perturbations in a given model. \emph{Democratic Training} is evaluated with 7 neural networks trained on 5 benchmark datasets and 5 types of state-of-the-art universal adversarial attack methods. The results show that it effectively reduces the attack success rate, improves model robustness and preserves the model accuracy on clean samples.
Abstract:Formal verification provides critical security assurances for neural networks, yet its practical application suffers from the long verification time. This work introduces a novel method for training verification-friendly neural networks, which are robust, easy to verify, and relatively accurate. Our method integrates neuron behavior consistency into the training process, making neuron activation states consistent across different inputs in a local neighborhood, reducing the number of unstable neurons and tightening the bounds of neurons thereby enhancing neural network verifiability. We evaluated our method using the MNIST, Fashion-MNIST, and CIFAR-10 datasets across various network architectures. The results of the experiment demonstrate that networks trained using our method are verification-friendly across different radii and different model architectures, whereas other tools fail to maintain verifiability as the radius increases. We also show that our method can be combined with existing methods to further improve the verifiability of networks.
Abstract:Large Language Models (LLMs) have emerged as a transformative AI paradigm, profoundly influencing daily life through their exceptional language understanding and contextual generation capabilities. Despite their remarkable performance, LLMs face a critical challenge: the propensity to produce unreliable outputs due to the inherent limitations of their learning-based nature. Formal methods (FMs), on the other hand, are a well-established computation paradigm that provides mathematically rigorous techniques for modeling, specifying, and verifying the correctness of systems. FMs have been extensively applied in mission-critical software engineering, embedded systems, and cybersecurity. However, the primary challenge impeding the deployment of FMs in real-world settings lies in their steep learning curves, the absence of user-friendly interfaces, and issues with efficiency and adaptability. This position paper outlines a roadmap for advancing the next generation of trustworthy AI systems by leveraging the mutual enhancement of LLMs and FMs. First, we illustrate how FMs, including reasoning and certification techniques, can help LLMs generate more reliable and formally certified outputs. Subsequently, we highlight how the advanced learning capabilities and adaptability of LLMs can significantly enhance the usability, efficiency, and scalability of existing FM tools. Finally, we show that unifying these two computation paradigms -- integrating the flexibility and intelligence of LLMs with the rigorous reasoning abilities of FMs -- has transformative potential for the development of trustworthy AI software systems. We acknowledge that this integration has the potential to enhance both the trustworthiness and efficiency of software engineering practices while fostering the development of intelligent FM tools capable of addressing complex yet real-world challenges.
Abstract:Recent studies reveal that Large Language Models (LLMs) are susceptible to backdoor attacks, where adversaries embed hidden triggers that manipulate model responses. Existing backdoor defense methods are primarily designed for vision or classification tasks, and are thus ineffective for text generation tasks, leaving LLMs vulnerable. We introduce Internal Consistency Regularization (CROW), a novel defense using consistency regularization finetuning to address layer-wise inconsistencies caused by backdoor triggers. CROW leverages the intuition that clean models exhibit smooth, consistent transitions in hidden representations across layers, whereas backdoored models show noticeable fluctuation when triggered. By enforcing internal consistency through adversarial perturbations and regularization, CROW neutralizes backdoor effects without requiring clean reference models or prior trigger knowledge, relying only on a small set of clean data. This makes it practical for deployment across various LLM architectures. Experimental results demonstrate that CROW consistently achieves a significant reductions in attack success rates across diverse backdoor strategies and tasks, including negative sentiment, targeted refusal, and code injection, on models such as Llama-2 (7B, 13B), CodeLlama (7B, 13B) and Mistral-7B, while preserving the model's generative capabilities.
Abstract:Despite the success of Large Language Models (LLMs) across various fields, their potential to generate untruthful, biased and harmful responses poses significant risks, particularly in critical applications. This highlights the urgent need for systematic methods to detect and prevent such misbehavior. While existing approaches target specific issues such as harmful responses, this work introduces LLMScan, an innovative LLM monitoring technique based on causality analysis, offering a comprehensive solution. LLMScan systematically monitors the inner workings of an LLM through the lens of causal inference, operating on the premise that the LLM's `brain' behaves differently when misbehaving. By analyzing the causal contributions of the LLM's input tokens and transformer layers, LLMScan effectively detects misbehavior. Extensive experiments across various tasks and models reveal clear distinctions in the causal distributions between normal behavior and misbehavior, enabling the development of accurate, lightweight detectors for a variety of misbehavior detection tasks.
Abstract:Despite significant ongoing efforts in safety alignment, large language models (LLMs) such as GPT-4 and LLaMA 3 remain vulnerable to jailbreak attacks that can induce harmful behaviors, including those triggered by adversarial suffixes. Building on prior research, we hypothesize that these adversarial suffixes are not mere bugs but may represent features that can dominate the LLM's behavior. To evaluate this hypothesis, we conduct several experiments. First, we demonstrate that benign features can be effectively made to function as adversarial suffixes, i.e., we develop a feature extraction method to extract sample-agnostic features from benign dataset in the form of suffixes and show that these suffixes may effectively compromise safety alignment. Second, we show that adversarial suffixes generated from jailbreak attacks may contain meaningful features, i.e., appending the same suffix to different prompts results in responses exhibiting specific characteristics. Third, we show that such benign-yet-safety-compromising features can be easily introduced through fine-tuning using only benign datasets, i.e., even in the absence of harmful content. This highlights the critical risk posed by dominating benign features in the training data and calls for further research to reinforce LLM safety alignment. Our code and data is available at \url{https://github.com/anonymous}.
Abstract:Large Language Models (LLMs) require frequent updates to correct errors and keep pace with continuously evolving knowledge in a timely and effective manner. Recent research in it model editing has highlighted the challenges in balancing generalization and locality, especially in the context of lifelong model editing. We discover that inserting knowledge directly into the model often causes conflicts and potentially disrupts other unrelated pre-trained knowledge. To address this problem, we introduce UniAdapt, a universal adapter for knowledge calibration. Inspired by the Mixture of Experts architecture and Retrieval-Augmented Generation, UniAdapt is designed with a vector-assisted router that is responsible for routing inputs to appropriate experts. The router maintains a vector store, including multiple shards, to construct routing vectors based on semantic similarity search results. UniAdapt is fully model-agnostic and designed for seamless plug-and-play integration. Experimental results show that UniAdapt outperforms existing lifelong model editors and achieves exceptional results in most metrics.