Abstract:Recent studies reveal that Large Language Models (LLMs) are susceptible to backdoor attacks, where adversaries embed hidden triggers that manipulate model responses. Existing backdoor defense methods are primarily designed for vision or classification tasks, and are thus ineffective for text generation tasks, leaving LLMs vulnerable. We introduce Internal Consistency Regularization (CROW), a novel defense using consistency regularization finetuning to address layer-wise inconsistencies caused by backdoor triggers. CROW leverages the intuition that clean models exhibit smooth, consistent transitions in hidden representations across layers, whereas backdoored models show noticeable fluctuation when triggered. By enforcing internal consistency through adversarial perturbations and regularization, CROW neutralizes backdoor effects without requiring clean reference models or prior trigger knowledge, relying only on a small set of clean data. This makes it practical for deployment across various LLM architectures. Experimental results demonstrate that CROW consistently achieves a significant reductions in attack success rates across diverse backdoor strategies and tasks, including negative sentiment, targeted refusal, and code injection, on models such as Llama-2 (7B, 13B), CodeLlama (7B, 13B) and Mistral-7B, while preserving the model's generative capabilities.
Abstract:The application of deep neural network models in various security-critical applications has raised significant security concerns, particularly the risk of backdoor attacks. Neural backdoors pose a serious security threat as they allow attackers to maliciously alter model behavior. While many defenses have been explored, existing approaches are often bounded by model-specific constraints, or necessitate complex alterations to the training process, or fall short against diverse backdoor attacks. In this work, we introduce a novel method for comprehensive and effective elimination of backdoors, called ULRL (short for UnLearn and ReLearn for backdoor removal). ULRL requires only a small set of clean samples and works effectively against all kinds of backdoors. It first applies unlearning for identifying suspicious neurons and then targeted neural weight tuning for backdoor mitigation (i.e., by promoting significant weight deviation on the suspicious neurons). Evaluated against 12 different types of backdoors, ULRL is shown to significantly outperform state-of-the-art methods in eliminating backdoors whilst preserving the model utility.