Abstract:The Mice Autism Detection via Ultrasound Vocalization (MAD-UV) Challenge introduces the first INTERSPEECH challenge focused on detecting autism spectrum disorder (ASD) in mice through their vocalizations. Participants are tasked with developing models to automatically classify mice as either wild-type or ASD models based on recordings with a high sampling rate. Our baseline system employs a simple CNN-based classification using three different spectrogram features. Results demonstrate the feasibility of automated ASD detection, with the considered audible-range features achieving the best performance (UAR of 0.600 for segment-level and 0.625 for subject-level classification). This challenge bridges speech technology and biomedical research, offering opportunities to advance our understanding of ASD models through machine learning approaches. The findings suggest promising directions for vocalization analysis and highlight the potential value of audible and ultrasound vocalizations in ASD detection.
Abstract:It is clinically crucial and potentially very beneficial to be able to analyze and model directly the spatial distributions of cells in histopathology whole slide images (WSI). However, most existing WSI datasets lack cell-level annotations, owing to the extremely high cost over giga-pixel images. Thus, it remains an open question whether deep learning models can directly and effectively analyze WSIs from the semantic aspect of cell distributions. In this work, we construct a large-scale WSI dataset with more than 5 billion cell-level annotations, termed WSI-Cell5B, and a novel hierarchical Cell Cloud Transformer (CCFormer) to tackle these challenges. WSI-Cell5B is based on 6,998 WSIs of 11 cancers from The Cancer Genome Atlas Program, and all WSIs are annotated per cell by coordinates and types. To the best of our knowledge, WSI-Cell5B is the first WSI-level large-scale dataset integrating cell-level annotations. On the other hand, CCFormer formulates the collection of cells in each WSI as a cell cloud and models cell spatial distribution. Specifically, Neighboring Information Embedding (NIE) is proposed to characterize the distribution of cells within the neighborhood of each cell, and a novel Hierarchical Spatial Perception (HSP) module is proposed to learn the spatial relationship among cells in a bottom-up manner. The clinical analysis indicates that WSI-Cell5B can be used to design clinical evaluation metrics based on counting cells that effectively assess the survival risk of patients. Extensive experiments on survival prediction and cancer staging show that learning from cell spatial distribution alone can already achieve state-of-the-art (SOTA) performance, i.e., CCFormer strongly outperforms other competing methods.
Abstract:Histopathology plays a critical role in medical diagnostics, with whole slide images (WSIs) offering valuable insights that directly influence clinical decision-making. However, the large size and complexity of WSIs may pose significant challenges for deep learning models, in both computational efficiency and effective representation learning. In this work, we introduce Pixel-Mamba, a novel deep learning architecture designed to efficiently handle gigapixel WSIs. Pixel-Mamba leverages the Mamba module, a state-space model (SSM) with linear memory complexity, and incorporates local inductive biases through progressively expanding tokens, akin to convolutional neural networks. This enables Pixel-Mamba to hierarchically combine both local and global information while efficiently addressing computational challenges. Remarkably, Pixel-Mamba achieves or even surpasses the quantitative performance of state-of-the-art (SOTA) foundation models that were pretrained on millions of WSIs or WSI-text pairs, in a range of tumor staging and survival analysis tasks, {\bf even without requiring any pathology-specific pretraining}. Extensive experiments demonstrate the efficacy of Pixel-Mamba as a powerful and efficient framework for end-to-end WSI analysis.
Abstract:Natural Language Inference (NLI) is the task of inferring whether the hypothesis can be justified by the given premise. Basically, we classify the hypothesis into three labels(entailment, neutrality and contradiction) given the premise. NLI was well studied by the previous researchers. A number of models, especially the transformer based ones, have achieved significant improvement on these tasks. However, it is reported that these models are suffering when they are dealing with hard datasets. Particularly, they perform much worse when dealing with unseen out-of-distribution premise and hypothesis. They may not understand the semantic content but learn the spurious correlations. In this work, we propose the data augmentation and preprocessing methods to solve the word overlap, numerical reasoning and length mismatch problems. These methods are general methods that do not rely on the distribution of the testing data and they help improve the robustness of the models.
Abstract:Evaluating the decision-making system is indispensable in developing autonomous vehicles, while realistic and challenging safety-critical test scenarios play a crucial role. Obtaining these scenarios is non-trivial, thanks to the long-tailed distribution, sparsity, and rarity in real-world data sets. To tackle this problem, in this paper, we introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques. By doing this, we can obtain large-scale test scenarios that are both diverse and realistic. Specifically, we build a simulation environment that mimics natural traffic interaction scenarios. Informed by this environment, we implement a two-stage procedure. The first stage incorporates conventional rule-based models, e.g., IDM~(Intelligent Driver Model) and MOBIL~(Minimizing Overall Braking Induced by Lane changes) model, to coarsely and discretely capture and calibrate key control parameters from the real-world dataset. Next, we leverage GAIL~(Generative Adversarial Imitation Learning) to represent driver behaviors continuously. The derived GAIL can be further used to design a PPO~(Proximal Policy Optimization)-based actor-critic network framework to fine-tune the reward function, and then optimizes our natural adversarial scenario generation solution. Extensive experiments have been conducted in the NGSIM dataset including the trajectory of 3,000 vehicles. Essential traffic parameters were measured in comparison with the baseline model, e.g., the collision rate, accelerations, steering, and the number of lane changes. Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality, which can be a cornerstone for the development of autonomous vehicles.
Abstract:Metal Sintering is a necessary step for Metal Injection Molded parts and binder jet such as HP's metal 3D printer. The metal sintering process introduces large deformation varying from 25 to 50% depending on the green part porosity. In this paper, we use a graph-based deep learning approach to predict the part deformation, which can speed up the deformation simulation substantially at the voxel level. Running a well-trained Metal Sintering inferencing engine only takes a range of seconds to obtain the final sintering deformation value. The tested accuracy on example complex geometry achieves 0.7um mean deviation for a 63mm testing part.
Abstract:Simulation is pivotal in evaluating the performance of autonomous driving systems due to the advantages in efficiency and cost compared to on-road testing. Realistic multi-agent behavior~(e.g., interactive and long-term) is needed to narrow the gap between the simulation and the reality. The existing work has the following shortcomings in achieving this goal:~(1) log replay offers realistic scenarios but leads to unrealistic collisions due to lacking dynamic interactions, and~(2) model-based and learning-based solutions encourage interactions but often deviate from real-world data in long horizons. In this work, we propose LitSim, a long-term interactive simulation approach that maximizes realism while avoiding unrealistic collisions. Specifically, we replay the log for most scenarios and intervene only when LitSim predicts unrealistic conflicts. We then encourage interactions among the agents and resolve the conflicts, thereby reducing the likelihood of unrealistic collisions. We train and validate our model on the real-world dataset NGSIM, and the experimental results demonstrate that LitSim outperforms the current popular approaches in realism and reactivity.
Abstract:Using machine learning (ML) techniques to predict material properties is a crucial research topic. These properties depend on numerical data and semantic factors. Due to the limitations of small-sample datasets, existing methods typically adopt ML algorithms to regress numerical properties or transfer other pre-trained knowledge graphs (KGs) to the material. However, these methods cannot simultaneously handle semantic and numerical information. In this paper, we propose a numerical reasoning method for material KGs (NR-KG), which constructs a cross-modal KG using semantic nodes and numerical proxy nodes. It captures both types of information by projecting KG into a canonical KG and utilizes a graph neural network to predict material properties. In this process, a novel projection prediction loss is proposed to extract semantic features from numerical information. NR-KG facilitates end-to-end processing of cross-modal data, mining relationships and cross-modal information in small-sample datasets, and fully utilizes valuable experimental data to enhance material prediction. We further propose two new High-Entropy Alloys (HEA) property datasets with semantic descriptions. NR-KG outperforms state-of-the-art (SOTA) methods, achieving relative improvements of 25.9% and 16.1% on two material datasets. Besides, NR-KG surpasses SOTA methods on two public physical chemistry molecular datasets, showing improvements of 22.2% and 54.3%, highlighting its potential application and generalizability. We hope the proposed datasets, algorithms, and pre-trained models can facilitate the communities of KG and AI for materials.
Abstract:Automated driving vehicles~(ADV) promise to enhance driving efficiency and safety, yet they face intricate challenges in safety-critical scenarios. As a result, validating ADV within generated safety-critical scenarios is essential for both development and performance evaluations. This paper investigates the complexities of employing two major scenario-generation solutions: data-driven and knowledge-driven methods. Data-driven methods derive scenarios from recorded datasets, efficiently generating scenarios by altering the existing behavior or trajectories of traffic participants but often falling short in considering ADV perception; knowledge-driven methods provide effective coverage through expert-designed rules, but they may lead to inefficiency in generating safety-critical scenarios within that coverage. To overcome these challenges, we introduce BridgeGen, a safety-critical scenario generation framework, designed to bridge the benefits of both methodologies. Specifically, by utilizing ontology-based techniques, BridgeGen models the five scenario layers in the operational design domain (ODD) from knowledge-driven methods, ensuring broad coverage, and incorporating data-driven strategies to efficiently generate safety-critical scenarios. An optimized scenario generation toolkit is developed within BridgeGen. This expedites the crafting of safety-critical scenarios through a combination of traditional optimization and reinforcement learning schemes. Extensive experiments conducted using Carla simulator demonstrate the effectiveness of BridgeGen in generating diverse safety-critical scenarios.
Abstract:Vehicular crowd intelligence (VCI) is an emerging research field. Facilitated by state-of-the-art vehicular ad-hoc networks and artificial intelligence, various VCI applications come to place, e.g., collaborative sensing, positioning, and mapping. The collaborative property of VCI applications generally requires data to be shared among participants, thus forming network-wide intelligence. How to fulfill this process without compromising data privacy remains a challenging issue. Although federated learning (FL) is a promising tool to solve the problem, adapting conventional FL frameworks to VCI is nontrivial. First, the centralized model aggregation is unreliable in VCI because of the existence of stragglers with unfavorable channel conditions. Second, existing FL schemes are vulnerable to Non-IID data, which is intensified by the data heterogeneity in VCI. This paper proposes a novel federated learning framework called RaftFed to facilitate privacy-preserving VCI. The experimental results show that RaftFed performs better than baselines regarding communication overhead, model accuracy, and model convergence.