Abstract:Uncertainty estimation is crucial in scientific data for machine learning. Current uncertainty estimation methods mainly focus on the model's inherent uncertainty, while neglecting the explicit modeling of noise in the data. Furthermore, noise estimation methods typically rely on temporal or spatial dependencies, which can pose a significant challenge in structured scientific data where such dependencies among samples are often absent. To address these challenges in scientific research, we propose the Taylor-Sensus Network (TSNet). TSNet innovatively uses a Taylor series expansion to model complex, heteroscedastic noise and proposes a deep Taylor block for aware noise distribution. TSNet includes a noise-aware contrastive learning module and a data density perception module for aleatoric and epistemic uncertainty. Additionally, an uncertainty combination operator is used to integrate these uncertainties, and the network is trained using a novel heteroscedastic mean square error loss. TSNet demonstrates superior performance over mainstream and state-of-the-art methods in experiments, highlighting its potential in scientific research and noise resistance. It will be open-source to facilitate the community of "AI for Science".
Abstract:Foundational vision models, such as the Segment Anything Model (SAM), have achieved significant breakthroughs through extensive pre-training on large-scale visual datasets. Despite their general success, these models may fall short in specialized tasks with limited data, and fine-tuning such large-scale models is often not feasible. Current strategies involve incorporating adaptors into the pre-trained SAM to facilitate downstream task performance with minimal model adjustment. However, these strategies can be hampered by suboptimal learning approaches for the adaptors. In this paper, we introduce a novel Multi-scale Contrastive Adaptor learning method named MCA-SAM, which enhances adaptor performance through a meticulously designed contrastive learning framework at both token and sample levels. Our Token-level Contrastive adaptor (TC-adaptor) focuses on refining local representations by improving the discriminability of patch tokens, while the Sample-level Contrastive adaptor (SC-adaptor) amplifies global understanding across different samples. Together, these adaptors synergistically enhance feature comparison within and across samples, bolstering the model's representational strength and its ability to adapt to new tasks. Empirical results demonstrate that MCA-SAM sets new benchmarks, outperforming existing methods in three challenging domains: camouflage object detection, shadow segmentation, and polyp segmentation. Specifically, MCA-SAM exhibits substantial relative performance enhancements, achieving a 20.0% improvement in MAE on the COD10K dataset, a 6.0% improvement in MAE on the CAMO dataset, a 15.4% improvement in BER on the ISTD dataset, and a 7.9% improvement in mDice on the Kvasir-SEG dataset.
Abstract:Using machine learning (ML) techniques to predict material properties is a crucial research topic. These properties depend on numerical data and semantic factors. Due to the limitations of small-sample datasets, existing methods typically adopt ML algorithms to regress numerical properties or transfer other pre-trained knowledge graphs (KGs) to the material. However, these methods cannot simultaneously handle semantic and numerical information. In this paper, we propose a numerical reasoning method for material KGs (NR-KG), which constructs a cross-modal KG using semantic nodes and numerical proxy nodes. It captures both types of information by projecting KG into a canonical KG and utilizes a graph neural network to predict material properties. In this process, a novel projection prediction loss is proposed to extract semantic features from numerical information. NR-KG facilitates end-to-end processing of cross-modal data, mining relationships and cross-modal information in small-sample datasets, and fully utilizes valuable experimental data to enhance material prediction. We further propose two new High-Entropy Alloys (HEA) property datasets with semantic descriptions. NR-KG outperforms state-of-the-art (SOTA) methods, achieving relative improvements of 25.9% and 16.1% on two material datasets. Besides, NR-KG surpasses SOTA methods on two public physical chemistry molecular datasets, showing improvements of 22.2% and 54.3%, highlighting its potential application and generalizability. We hope the proposed datasets, algorithms, and pre-trained models can facilitate the communities of KG and AI for materials.
Abstract:While large multimodal models (LMMs) have achieved remarkable progress, generating pixel-level masks for image reasoning tasks involving multiple open-world targets remains a challenge. To bridge this gap, we introduce PixelLM, an effective and efficient LMM for pixel-level reasoning and understanding. Central to PixelLM is a novel, lightweight pixel decoder and a comprehensive segmentation codebook. The decoder efficiently produces masks from the hidden embeddings of the codebook tokens, which encode detailed target-relevant information. With this design, PixelLM harmonizes with the structure of popular LMMs and avoids the need for additional costly segmentation models. Furthermore, we propose a target refinement loss to enhance the model's ability to differentiate between multiple targets, leading to substantially improved mask quality. To advance research in this area, we construct MUSE, a high-quality multi-target reasoning segmentation benchmark. PixelLM excels across various pixel-level image reasoning and understanding tasks, outperforming well-established methods in multiple benchmarks, including MUSE, single- and multi-referring segmentation. Comprehensive ablations confirm the efficacy of each proposed component. All code, models, and datasets will be publicly available.
Abstract:3D style transfer aims to render stylized novel views of 3D scenes with the specified style, which requires high-quality rendering and keeping multi-view consistency. Benefiting from the ability of 3D representation from Neural Radiance Field (NeRF), existing methods learn the stylized NeRF by giving a reference style from an image. However, they suffer the challenges of high-quality stylization with texture details for multi-style transfer and stylization with multimodal guidance. In this paper, we reveal that the same objects in 3D scenes show various states (color tone, details, etc.) from different views after stylization since previous methods optimized by single-view image-based style loss functions, leading NeRF to tend to smooth texture details, further resulting in low-quality rendering. To tackle these problems, we propose a novel Multimodal-guided 3D Multi-style transfer of NeRF, termed MM-NeRF, which achieves high-quality 3D multi-style rendering with texture details and can be driven by multimodal-style guidance. First, MM-NeRF adopts a unified framework to project multimodal guidance into CLIP space and extracts multimodal style features to guide the multi-style stylization. To relieve the problem of lacking details, we propose a novel Multi-Head Learning Scheme (MLS), in which each style head predicts the parameters of the color head of NeRF. MLS decomposes the learning difficulty caused by the inconsistency of multi-style transfer and improves the quality of stylization. In addition, the MLS can generalize pre-trained MM-NeRF to any new styles by adding heads with small training costs (a few minutes). Extensive experiments on three real-world 3D scene datasets show that MM-NeRF achieves high-quality 3D multi-style stylization with multimodal guidance, keeps multi-view consistency, and keeps semantic consistency of multimodal style guidance. Codes will be released later.
Abstract:One of the mainstream schemes for 2D human pose estimation (HPE) is learning keypoints heatmaps by a neural network. Existing methods typically improve the quality of heatmaps by customized architectures, such as high-resolution representation and vision Transformers. In this paper, we propose \textbf{DiffusionPose}, a new scheme that formulates 2D HPE as a keypoints heatmaps generation problem from noised heatmaps. During training, the keypoints are diffused to random distribution by adding noises and the diffusion model learns to recover ground-truth heatmaps from noised heatmaps with respect to conditions constructed by image feature. During inference, the diffusion model generates heatmaps from initialized heatmaps in a progressive denoising way. Moreover, we further explore improving the performance of DiffusionPose with conditions from human structural information. Extensive experiments show the prowess of our DiffusionPose, with improvements of 1.6, 1.2, and 1.2 mAP on widely-used COCO, CrowdPose, and AI Challenge datasets, respectively.
Abstract:Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations. However, there is limited research on learning video-text representations for general video multimodal tasks based on these powerful features. Towards this goal, we propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature Adapting and Blending, which transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks. Specifically, VLAB is founded on two key strategies: feature adapting and feature blending. In the former, we introduce a new video adapter module to address CLIP's deficiency in modeling temporal information and extend the model's capability to encompass both contrastive and generative tasks. In the latter, we propose an end-to-end training method that further enhances the model's performance by exploiting the complementarity of image and video features. We validate the effectiveness and versatility of VLAB through extensive experiments on highly competitive video multimodal tasks, including video text retrieval, video captioning, and video question answering. Remarkably, VLAB outperforms competing methods significantly and sets new records in video question answering on MSRVTT, MSVD, and TGIF datasets. It achieves an accuracy of 49.6, 61.0, and 79.0, respectively. Codes and models will be released.
Abstract:Existing methods of multi-person video 3D human Pose and Shape Estimation (PSE) typically adopt a two-stage strategy, which first detects human instances in each frame and then performs single-person PSE with temporal model. However, the global spatio-temporal context among spatial instances can not be captured. In this paper, we propose a new end-to-end multi-person 3D Pose and Shape estimation framework with progressive Video Transformer, termed PSVT. In PSVT, a spatio-temporal encoder (STE) captures the global feature dependencies among spatial objects. Then, spatio-temporal pose decoder (STPD) and shape decoder (STSD) capture the global dependencies between pose queries and feature tokens, shape queries and feature tokens, respectively. To handle the variances of objects as time proceeds, a novel scheme of progressive decoding is used to update pose and shape queries at each frame. Besides, we propose a novel pose-guided attention (PGA) for shape decoder to better predict shape parameters. The two components strengthen the decoder of PSVT to improve performance. Extensive experiments on the four datasets show that PSVT achieves stage-of-the-art results.
Abstract:Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a ``divided attention'' which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins. Code and pre-trained models are available at https://github.com/researchmm/FTVSR.
Abstract:Modern deep learning-based 3D pose estimation approaches require plenty of 3D pose annotations. However, existing 3D datasets lack diversity, which limits the performance of current methods and their generalization ability. Although existing methods utilize 2D pose annotations to help 3D pose estimation, they mainly focus on extracting 2D structural constraints from 2D poses, ignoring the 3D information hidden in the images. In this paper, we propose a novel method to extract weak 3D information directly from 2D images without 3D pose supervision. Firstly, we utilize 2D pose annotations and perspective prior knowledge to generate the relationship of that keypoint is closer or farther from the camera, called relative depth. We collect a 2D pose dataset (MCPC) and generate relative depth labels. Based on MCPC, we propose a weakly-supervised pre-training (WSP) strategy to distinguish the depth relationship between two points in an image. WSP enables the learning of the relative depth of two keypoints on lots of in-the-wild images, which is more capable of predicting depth and generalization ability for 3D human pose estimation. After fine-tuning on 3D pose datasets, WSP achieves state-of-the-art results on two widely-used benchmarks.