Abstract:Visual instruction tuning is the key to building multimodal large language models (MLLMs), which greatly improves the reasoning capabilities of large language models (LLMs) in vision scenario. However, existing MLLMs mostly rely on a mixture of multiple highly diverse visual instruction datasets for training (even more than a million instructions), which may introduce data redundancy. To investigate this issue, we conduct a series of empirical studies, which reveal a significant redundancy within the visual instruction datasets, and show that greatly reducing the amount of several instruction dataset even do not affect the performance. Based on the findings, we propose a new data selection approach TIVE, to eliminate redundancy within visual instruction data. TIVE first estimates the task-level and instance-level value of the visual instructions based on computed gradients. Then, according to the estimated values, TIVE determines the task proportion within the visual instructions, and selects representative instances to compose a smaller visual instruction subset for training. Experiments on LLaVA-1.5 show that our approach using only about 7.5% data can achieve comparable performance as the full-data fine-tuned model across seven benchmarks, even surpassing it on four of the benchmarks. Our code and data will be publicly released.
Abstract:Despite the superior performance, Large Language Models~(LLMs) require significant computational resources for deployment and use. To overcome this issue, quantization methods have been widely applied to reduce the memory footprint of LLMs as well as increasing the inference rate. However, a major challenge is that low-bit quantization methods often lead to performance degradation. It is important to understand how quantization impacts the capacity of LLMs. Different from previous studies focused on overall performance, this work aims to investigate the impact of quantization on \emph{emergent abilities}, which are important characteristics that distinguish LLMs from small language models. Specially, we examine the abilities of in-context learning, chain-of-thought reasoning, and instruction-following in quantized LLMs. Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation on the test of these abilities. To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning. Our work derives a series of important findings to understand the impact of quantization on emergent abilities, and sheds lights on the possibilities of extremely low-bit quantization for LLMs.
Abstract:Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations. However, there is limited research on learning video-text representations for general video multimodal tasks based on these powerful features. Towards this goal, we propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature Adapting and Blending, which transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks. Specifically, VLAB is founded on two key strategies: feature adapting and feature blending. In the former, we introduce a new video adapter module to address CLIP's deficiency in modeling temporal information and extend the model's capability to encompass both contrastive and generative tasks. In the latter, we propose an end-to-end training method that further enhances the model's performance by exploiting the complementarity of image and video features. We validate the effectiveness and versatility of VLAB through extensive experiments on highly competitive video multimodal tasks, including video text retrieval, video captioning, and video question answering. Remarkably, VLAB outperforms competing methods significantly and sets new records in video question answering on MSRVTT, MSVD, and TGIF datasets. It achieves an accuracy of 49.6, 61.0, and 79.0, respectively. Codes and models will be released.
Abstract:Large pre-trained multimodal models have demonstrated significant success in a range of downstream tasks, including image captioning, image-text retrieval, visual question answering (VQA), etc. However, many of these methods rely on image-text pairs collected from the web as pre-training data and unfortunately overlook the need for fine-grained feature alignment between vision and language modalities, which requires detailed understanding of images and language expressions. While integrating VQA and dense captioning (DC) into pre-training can address this issue, acquiring image-question-answer as well as image-location-caption triplets is challenging and time-consuming. Additionally, publicly available datasets for VQA and dense captioning are typically limited in scale due to manual data collection and labeling efforts. In this paper, we propose a novel method called Joint QA and DC GEneration (JADE), which utilizes a pre-trained multimodal model and easily-crawled image-text pairs to automatically generate and filter large-scale VQA and dense captioning datasets. We apply this method to the Conceptual Caption (CC3M) dataset to generate a new dataset called CC3M-QA-DC. Experiments show that when used for pre-training in a multi-task manner, CC3M-QA-DC can improve the performance with various backbones on various downstream tasks. Furthermore, our generated CC3M-QA-DC can be combined with larger image-text datasets (e.g., CC15M) and achieve competitive results compared with models using much more data. Code and dataset will be released.
Abstract:Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.
Abstract:As Transformer evolved, pre-trained models have advanced at a breakneck pace in recent years. They have dominated the mainstream techniques in natural language processing (NLP) and computer vision (CV). How to adapt pre-training to the field of Vision-and-Language (V-L) learning and improve the performance on downstream tasks becomes a focus of multimodal learning. In this paper, we review the recent progress in Vision-Language Pre-Trained Models (VL-PTMs). As the core content, we first briefly introduce several ways to encode raw images and texts to single-modal embeddings before pre-training. Then, we dive into the mainstream architectures of VL-PTMs in modeling the interaction between text and image representations. We further present widely-used pre-training tasks, after which we introduce some common downstream tasks. We finally conclude this paper and present some promising research directions. Our survey aims to provide multimodal researchers a synthesis and pointer to related research.