Abstract:We propose to build omni-modal intelligence, which is capable of understanding any modality and learning universal representations. In specific, we propose a scalable pretraining paradigm, named Multimodal Context (MiCo), which can scale up the numbers of modalities and amount of data, together with the model parameters, in the pretraining process. With MiCo, the pretrained models show significant emergent abilities in multimodal learning, which are evaluated on the following tasks: i) single-modality perception benchmarks of 10 different modalities, ii) 25 cross-modality understanding tasks of retrieval, question-answering, captioning, and iii) 18 multimodal large language model benchmarks. Our models establish 37 new records for state-of-the-art performance. We hope that our research could contribute to the development of omni-modal intelligence. Code and Models are at https://github.com/invictus717/MiCo
Abstract:Due to the limited scale and quality of video-text training corpus, most vision-language foundation models employ image-text datasets for pretraining and primarily focus on modeling visually semantic representations while disregarding temporal semantic representations and correlations. To address this issue, we propose COSA, a COncatenated SAmple pretrained vision-language foundation model. COSA jointly models visual contents and event-level temporal cues using only image-text corpora. We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining. This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus, enabling richer scene transformations and explicit event-description correspondence. Extensive experiments demonstrate that COSA consistently improves performance across a broad range of downstream tasks, including long-form/short-form video-text tasks and image-text tasks such as retrieval, captioning, and question answering. Notably, COSA achieves state-of-the-art results on various competitive benchmarks. Code and model are released at https://github.com/TXH-mercury/COSA.
Abstract:Vision and text have been fully explored in contemporary video-text foundational models, while other modalities such as audio and subtitles in videos have not received sufficient attention. In this paper, we resort to establish connections between multi-modality video tracks, including Vision, Audio, and Subtitle, and Text by exploring an automatically generated large-scale omni-modality video caption dataset called VAST-27M. Specifically, we first collect 27 million open-domain video clips and separately train a vision and an audio captioner to generate vision and audio captions. Then, we employ an off-the-shelf Large Language Model (LLM) to integrate the generated captions, together with subtitles and instructional prompts into omni-modality captions. Based on the proposed VAST-27M dataset, we train an omni-modality video-text foundational model named VAST, which can perceive and process vision, audio, and subtitle modalities from video, and better support various tasks including vision-text, audio-text, and multi-modal video-text tasks (retrieval, captioning and QA). Extensive experiments have been conducted to demonstrate the effectiveness of our proposed VAST-27M corpus and VAST foundation model. VAST achieves 22 new state-of-the-art results on various cross-modality benchmarks. Code, model and dataset will be released at https://github.com/TXH-mercury/VAST.
Abstract:Large pre-trained multimodal models have demonstrated significant success in a range of downstream tasks, including image captioning, image-text retrieval, visual question answering (VQA), etc. However, many of these methods rely on image-text pairs collected from the web as pre-training data and unfortunately overlook the need for fine-grained feature alignment between vision and language modalities, which requires detailed understanding of images and language expressions. While integrating VQA and dense captioning (DC) into pre-training can address this issue, acquiring image-question-answer as well as image-location-caption triplets is challenging and time-consuming. Additionally, publicly available datasets for VQA and dense captioning are typically limited in scale due to manual data collection and labeling efforts. In this paper, we propose a novel method called Joint QA and DC GEneration (JADE), which utilizes a pre-trained multimodal model and easily-crawled image-text pairs to automatically generate and filter large-scale VQA and dense captioning datasets. We apply this method to the Conceptual Caption (CC3M) dataset to generate a new dataset called CC3M-QA-DC. Experiments show that when used for pre-training in a multi-task manner, CC3M-QA-DC can improve the performance with various backbones on various downstream tasks. Furthermore, our generated CC3M-QA-DC can be combined with larger image-text datasets (e.g., CC15M) and achieve competitive results compared with models using much more data. Code and dataset will be released.