Senior Member, IEEE
Abstract:Vision-language pre-training (VLP) models excel at interpreting both images and text but remain vulnerable to multimodal adversarial examples (AEs). Advancing the generation of transferable AEs, which succeed across unseen models, is key to developing more robust and practical VLP models. Previous approaches augment image-text pairs to enhance diversity within the adversarial example generation process, aiming to improve transferability by expanding the contrast space of image-text features. However, these methods focus solely on diversity around the current AEs, yielding limited gains in transferability. To address this issue, we propose to increase the diversity of AEs by leveraging the intersection regions along the adversarial trajectory during optimization. Specifically, we propose sampling from adversarial evolution triangles composed of clean, historical, and current adversarial examples to enhance adversarial diversity. We provide a theoretical analysis to demonstrate the effectiveness of the proposed adversarial evolution triangle. Moreover, we find that redundant inactive dimensions can dominate similarity calculations, distorting feature matching and making AEs model-dependent with reduced transferability. Hence, we propose to generate AEs in the semantic image-text feature contrast space, which can project the original feature space into a semantic corpus subspace. The proposed semantic-aligned subspace can reduce the image feature redundancy, thereby improving adversarial transferability. Extensive experiments across different datasets and models demonstrate that the proposed method can effectively improve adversarial transferability and outperform state-of-the-art adversarial attack methods. The code is released at https://github.com/jiaxiaojunQAQ/SA-AET.
Abstract:Image restoration has experienced significant advancements due to the development of deep learning. Nevertheless, it encounters challenges related to ill-posed problems, resulting in deviations between single model predictions and ground-truths. Ensemble learning, as a powerful machine learning technique, aims to address these deviations by combining the predictions of multiple base models. Most existing works adopt ensemble learning during the design of restoration models, while only limited research focuses on the inference-stage ensemble of pre-trained restoration models. Regression-based methods fail to enable efficient inference, leading researchers in academia and industry to prefer averaging as their choice for post-training ensemble. To address this, we reformulate the ensemble problem of image restoration into Gaussian mixture models (GMMs) and employ an expectation maximization (EM)-based algorithm to estimate ensemble weights for aggregating prediction candidates. We estimate the range-wise ensemble weights on a reference set and store them in a lookup table (LUT) for efficient ensemble inference on the test set. Our algorithm is model-agnostic and training-free, allowing seamless integration and enhancement of various pre-trained image restoration models. It consistently outperforms regression based methods and averaging ensemble approaches on 14 benchmarks across 3 image restoration tasks, including super-resolution, deblurring and deraining. The codes and all estimated weights have been released in Github.
Abstract:Multi-task learning (MTL) leverages a shared model to accomplish multiple tasks and facilitate knowledge transfer. Recent research on task arithmetic-based MTL demonstrates that merging the parameters of independently fine-tuned models can effectively achieve MTL. However, existing merging methods primarily seek a static optimal solution within the original model parameter space, which often results in performance degradation due to the inherent diversity among tasks and potential interferences. To address this challenge, in this paper, we propose a Weight-Ensembling Mixture of Experts (WEMoE) method for multi-task model merging. Specifically, we first identify critical (or sensitive) modules by analyzing parameter variations in core modules of Transformer-based models before and after finetuning. Then, our WEMoE statically merges non-critical modules while transforming critical modules into a mixture-of-experts (MoE) structure. During inference, expert modules in the MoE are dynamically merged based on input samples, enabling a more flexible and adaptive merging approach. Building on WEMoE, we further introduce an efficient-and-effective WEMoE (E-WEMoE) method, whose core mechanism involves eliminating non-essential elements in the critical modules of WEMoE and implementing shared routing across multiple MoE modules, thereby significantly reducing both the trainable parameters, the overall parameter count, and computational overhead of the merged model by WEMoE. Experimental results across various architectures and tasks demonstrate that both WEMoE and E-WEMoE outperform state-of-the-art (SOTA) model merging methods in terms of MTL performance, generalization, and robustness.
Abstract:Graph Neural Networks (GNNs) have shown superior performance in node classification. However, GNNs perform poorly in the Few-Shot Node Classification (FSNC) task that requires robust generalization to make accurate predictions for unseen classes with limited labels. To tackle the challenge, we propose the integration of Sharpness-Aware Minimization (SAM)--a technique designed to enhance model generalization by finding a flat minimum of the loss landscape--into GNN training. The standard SAM approach, however, consists of two forward-backward steps in each training iteration, doubling the computational cost compared to the base optimizer (e.g., Adam). To mitigate this drawback, we introduce a novel algorithm, Fast Graph Sharpness-Aware Minimization (FGSAM), that integrates the rapid training of Multi-Layer Perceptrons (MLPs) with the superior performance of GNNs. Specifically, we utilize GNNs for parameter perturbation while employing MLPs to minimize the perturbed loss so that we can find a flat minimum with good generalization more efficiently. Moreover, our method reutilizes the gradient from the perturbation phase to incorporate graph topology into the minimization process at almost zero additional cost. To further enhance training efficiency, we develop FGSAM+ that executes exact perturbations periodically. Extensive experiments demonstrate that our proposed algorithm outperforms the standard SAM with lower computational costs in FSNC tasks. In particular, our FGSAM+ as a SAM variant offers a faster optimization than the base optimizer in most cases. In addition to FSNC, our proposed methods also demonstrate competitive performance in the standard node classification task for heterophilic graphs, highlighting the broad applicability. The code is available at https://github.com/draym28/FGSAM_NeurIPS24.
Abstract:Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely, diffusion feature. We discover that diffusion feature has been hindered by a hidden yet universal phenomenon that we call content shift. To be specific, there are content differences between features and the input image, such as the exact shape of a certain object. We locate the cause of content shift as one inherent characteristic of diffusion models, which suggests the broad existence of this phenomenon in diffusion feature. Further empirical study also indicates that its negative impact is not negligible even when content shift is not visually perceivable. Hence, we propose to suppress content shift to enhance the overall quality of diffusion features. Specifically, content shift is related to the information drift during the process of recovering an image from the noisy input, pointing out the possibility of turning off-the-shelf generation techniques into tools for content shift suppression. We further propose a practical guideline named GATE to efficiently evaluate the potential benefit of a technique and provide an implementation of our methodology. Despite the simplicity, the proposed approach has achieved superior results on various tasks and datasets, validating its potential as a generic booster for diffusion features. Our code is available at https://github.com/Darkbblue/diffusion-content-shift.
Abstract:Decentralized Federated Learning has emerged as an alternative to centralized architectures due to its faster training, privacy preservation, and reduced communication overhead. In decentralized communication, the server aggregation phase in Centralized Federated Learning shifts to the client side, which means that clients connect with each other in a peer-to-peer manner. However, compared to the centralized mode, data heterogeneity in Decentralized Federated Learning will cause larger variances between aggregated models, which leads to slow convergence in training and poor generalization performance in tests. To address these issues, we introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata. It consists of two main components: the Moreau envelope function, which primarily addresses parameter inconsistencies among clients caused by data heterogeneity, and Nesterov's extrapolation step, which accelerates the aggregation phase. Theoretically, we prove the optimization error bound and generalization error bound of the algorithm, providing a further understanding of the nature of the algorithm and the theoretical perspectives on the hyperparameter choice. Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions. Furthermore, we also experimentally verify the theoretical properties of DFedCata.
Abstract:Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative tasks such as semantic segmentation. Given numerous activations, selecting a small yet effective subset poses a fundamental problem. To this end, the early study of this field performs a large-scale quantitative comparison of the discriminative ability of the activations. However, we find that many potential activations have not been evaluated, such as the queries and keys used to compute attention scores. Moreover, recent advancements in diffusion architectures bring many new activations, such as those within embedded ViT modules. Both combined, activation selection remains unresolved but overlooked. To tackle this issue, this paper takes a further step with a much broader range of activations evaluated. Considering the significant increase in activations, a full-scale quantitative comparison is no longer operational. Instead, we seek to understand the properties of these activations, such that the activations that are clearly inferior can be filtered out in advance via simple qualitative evaluation. After careful analysis, we discover three properties universal among diffusion models, enabling this study to go beyond specific models. On top of this, we present effective feature selection solutions for several popular diffusion models. Finally, the experiments across multiple discriminative tasks validate the superiority of our method over the SOTA competitors. Our code is available at https://github.com/Darkbblue/generic-diffusion-feature.
Abstract:Adverse weather removal aims to restore clear vision under adverse weather conditions. Existing methods are mostly tailored for specific weather types and rely heavily on extensive labeled data. In dealing with these two limitations, this paper presents a pioneering semi-supervised all-in-one adverse weather removal framework built on the teacher-student network with a Denoising Diffusion Model (DDM) as the backbone, termed SemiDDM-Weather. As for the design of DDM backbone in our SemiDDM-Weather, we adopt the SOTA Wavelet Diffusion Model-Wavediff with customized inputs and loss functions, devoted to facilitating the learning of many-to-one mapping distributions for efficient all-in-one adverse weather removal with limited label data. To mitigate the risk of misleading model training due to potentially inaccurate pseudo-labels generated by the teacher network in semi-supervised learning, we introduce quality assessment and content consistency constraints to screen the "optimal" outputs from the teacher network as the pseudo-labels, thus more effectively guiding the student network training with unlabeled data. Experimental results show that on both synthetic and real-world datasets, our SemiDDM-Weather consistently delivers high visual quality and superior adverse weather removal, even when compared to fully supervised competitors. Our code and pre-trained model are available at this repository.
Abstract:Multimodal contrastive learning uses various data modalities to create high-quality features, but its reliance on extensive data sources on the Internet makes it vulnerable to backdoor attacks. These attacks insert malicious behaviors during training, which are activated by specific triggers during inference, posing significant security risks. Despite existing countermeasures through fine-tuning that reduce the malicious impacts of such attacks, these defenses frequently necessitate extensive training time and degrade clean accuracy. In this study, we propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning. This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities, known as Unlearn Backdoor Threats (UBT). We specifically use overfit training to improve backdoor shortcuts and accurately detect suspicious samples in the potential poisoning data set. Then, we select fewer unlearned samples from suspicious samples for rapid forgetting in order to eliminate the backdoor effect and thus improve backdoor defense efficiency. In the backdoor unlearning process, we present a novel token-based portion unlearning training regime. This technique focuses on the model's compromised elements, dissociating backdoor correlations while maintaining the model's overall integrity. Extensive experimental results show that our method effectively defends against various backdoor attack methods in the CLIP model. Compared to SoTA backdoor defense methods, UBT achieves the lowest attack success rate while maintaining a high clean accuracy of the model (attack success rate decreases by 19% compared to SOTA, while clean accuracy increases by 2.57%).
Abstract:Pre-trained large models for multimodal contrastive learning, such as CLIP, have been widely recognized in the industry as highly susceptible to data-poisoned backdoor attacks. This poses significant risks to downstream model training. In response to such potential threats, finetuning offers a simpler and more efficient defense choice compared to retraining large models with augmented data. In the supervised learning domain, fine-tuning defense strategies can achieve excellent defense performance. However, in the unsupervised and semi-supervised domain, we find that when CLIP faces some complex attack techniques, the existing fine-tuning defense strategy, CleanCLIP, has some limitations on defense performance. The synonym substitution of its text-augmentation is insufficient to enhance the text feature space. To compensate for this weakness, we improve it by proposing a fine-grained \textbf{T}ext \textbf{A}lignment \textbf{C}leaner (TA-Cleaner) to cut off feature connections of backdoor triggers. We randomly select a few samples for positive and negative subtext generation at each epoch of CleanCLIP, and align the subtexts to the images to strengthen the text self-supervision. We evaluate the effectiveness of our TA-Cleaner against six attack algorithms and conduct comprehensive zero-shot classification tests on ImageNet1K. Our experimental results demonstrate that TA-Cleaner achieves state-of-the-art defensiveness among finetuning-based defense techniques. Even when faced with the novel attack technique BadCLIP, our TA-Cleaner outperforms CleanCLIP by reducing the ASR of Top-1 and Top-10 by 52.02\% and 63.88\%, respectively.