Abstract:Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
Abstract:Spiking neural networks (SNNs) have gained traction in vision due to their energy efficiency, bio-plausibility, and inherent temporal processing. Yet, despite this temporal capacity, most progress concentrates on static image benchmarks, and SNNs still underperform on dynamic video tasks compared to artificial neural networks (ANNs). In this work, we diagnose a fundamental pass-band mismatch: Standard spiking dynamics behave as a temporal low pass that emphasizes static content while attenuating motion bearing bands, where task relevant information concentrates in dynamic tasks. This phenomenon explains why SNNs can approach ANNs on static tasks yet fall behind on tasks that demand richer temporal understanding.To remedy this, we propose the Pass-Bands Optimizer (PBO), a plug-and-play module that optimizes the temporal pass-band toward task-relevant motion bands. PBO introduces only two learnable parameters, and a lightweight consistency constraint that preserves semantics and boundaries, incurring negligible computational overhead and requires no architectural changes. PBO deliberately suppresses static components that contribute little to discrimination, effectively high passing the stream so that spiking activity concentrates on motion bearing content. On UCF101, PBO yields over ten percentage points improvement. On more complex multi-modal action recognition and weakly supervised video anomaly detection, PBO delivers consistent and significant gains, offering a new perspective for SNN based video processing and understanding.
Abstract:Targeted adversarial attacks on closed-source multimodal large language models (MLLMs) have been increasingly explored under black-box transfer, yet prior methods are predominantly sample-specific and offer limited reusability across inputs. We instead study a more stringent setting, Universal Targeted Transferable Adversarial Attacks (UTTAA), where a single perturbation must consistently steer arbitrary inputs toward a specified target across unknown commercial MLLMs. Naively adapting existing sample-wise attacks to this universal setting faces three core difficulties: (i) target supervision becomes high-variance due to target-crop randomness, (ii) token-wise matching is unreliable because universality suppresses image-specific cues that would otherwise anchor alignment, and (iii) few-source per-target adaptation is highly initialization-sensitive, which can degrade the attainable performance. In this work, we propose MCRMO-Attack, which stabilizes supervision via Multi-Crop Aggregation with an Attention-Guided Crop, improves token-level reliability through alignability-gated Token Routing, and meta-learns a cross-target perturbation prior that yields stronger per-target solutions. Across commercial MLLMs, we boost unseen-image attack success rate by +23.7\% on GPT-4o and +19.9\% on Gemini-2.0 over the strongest universal baseline.
Abstract:The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
Abstract:Hierarchical Bayesian models are increasingly used in large, inhomogeneous complex network dynamical systems by modeling parameters as draws from a hyperparameter-governed distribution. However, theoretical guarantees for these estimates as the system size grows have been lacking. A critical concern is that hyperparameter estimation may diverge for larger networks, undermining the model's reliability. Formulating the system's evolution in a measure transport perspective, we propose a theoretical framework for estimating hyperparameters with mean-type observations, which are prevalent in many scientific applications. Our primary contribution is a nonasymptotic bound for the deviation of estimate of hyperparameters in inhomogeneous complex network dynamical systems with respect to network population size, which is established for a general family of optimization algorithms within a fixed observation duration. While we firstly establish a consistency result for systems with independent nodes, our main result extends this guarantee to the more challenging and realistic setting of weakly-dependent nodes. We validate our theoretical findings with numerical experiments on two representative models: a Susceptible-Infected-Susceptible model and a Spiking Neuronal Network model. In both cases, the results confirm that the estimation error decreases as the network population size increases, aligning with our theoretical guarantees. This research proposes the foundational theory to ensure that hierarchical Bayesian methods are statistically consistent for large-scale inhomogeneous systems, filling a gap in this area of theoretical research and justifying their application in practice.
Abstract:Graph unlearning has emerged as a critical mechanism for supporting sustainable and privacy-preserving social networks, enabling models to remove the influence of deleted nodes and thereby better safeguard user information. However, we observe that existing graph unlearning techniques insufficiently protect sensitive attributes, often leading to degraded algorithmic fairness compared with traditional graph learning methods. To address this gap, we introduce FairGU, a fairness-aware graph unlearning framework designed to preserve both utility and fairness during the unlearning process. FairGU integrates a dedicated fairness-aware module with effective data protection strategies, ensuring that sensitive attributes are neither inadvertently amplified nor structurally exposed when nodes are removed. Through extensive experiments on multiple real-world datasets, we demonstrate that FairGU consistently outperforms state-of-the-art graph unlearning methods and fairness-enhanced graph learning baselines in terms of both accuracy and fairness metrics. Our findings highlight a previously overlooked risk in current unlearning practices and establish FairGU as a robust and equitable solution for the next generation of socially sustainable networked systems. The codes are available at https://github.com/LuoRenqiang/FairGU.
Abstract:Large language model (LLM) agents face fundamental limitations in long-horizon reasoning due to finite context windows, making effective memory management critical. Existing methods typically handle long-term memory (LTM) and short-term memory (STM) as separate components, relying on heuristics or auxiliary controllers, which limits adaptability and end-to-end optimization. In this paper, we propose Agentic Memory (AgeMem), a unified framework that integrates LTM and STM management directly into the agent's policy. AgeMem exposes memory operations as tool-based actions, enabling the LLM agent to autonomously decide what and when to store, retrieve, update, summarize, or discard information. To train such unified behaviors, we propose a three-stage progressive reinforcement learning strategy and design a step-wise GRPO to address sparse and discontinuous rewards induced by memory operations. Experiments on five long-horizon benchmarks demonstrate that AgeMem consistently outperforms strong memory-augmented baselines across multiple LLM backbones, achieving improved task performance, higher-quality long-term memory, and more efficient context usage.




Abstract:Accurate medical image segmentation is essential for clinical diagnosis and treatment planning. While recent interactive foundation models (e.g., nnInteractive) enhance generalization through large-scale multimodal pretraining, they still depend on precise prompts and often perform below expectations in contexts that are underrepresented in their training data. We present AtlasSegFM, an atlas-guided framework that customizes available foundation models to clinical contexts with a single annotated example. The core innovations are: 1) a pipeline that provides context-aware prompts for foundation models via registration between a context atlas and query images, and 2) a test-time adapter to fuse predictions from both atlas registration and the foundation model. Extensive experiments across public and in-house datasets spanning multiple modalities and organs demonstrate that AtlasSegFM consistently improves segmentation, particularly for small, delicate structures. AtlasSegFM provides a lightweight, deployable solution one-shot customization of foundation models in real-world clinical workflows. The code will be made publicly available.




Abstract:Multimodal Face Anti-Spoofing (FAS) methods, which integrate multiple visual modalities, often suffer even more severe performance degradation than unimodal FAS when deployed in unseen domains. This is mainly due to two overlooked risks that affect cross-domain multimodal generalization. The first is the modal representation invariant risk, i.e., whether representations remain generalizable under domain shift. We theoretically show that the inherent class asymmetry in FAS (diverse spoofs vs. compact reals) enlarges the upper bound of generalization error, and this effect is further amplified in multimodal settings. The second is the modal synergy invariant risk, where models overfit to domain-specific inter-modal correlations. Such spurious synergy cannot generalize to unseen attacks in target domains, leading to performance drops. To solve these issues, we propose a provable framework, namely Multimodal Representation and Synergy Invariance Learning (RiSe). For representation risk, RiSe introduces Asymmetric Invariant Risk Minimization (AsyIRM), which learns an invariant spherical decision boundary in radial space to fit asymmetric distributions, while preserving domain cues in angular space. For synergy risk, RiSe employs Multimodal Synergy Disentanglement (MMSD), a self-supervised task enhancing intrinsic, generalizable modal features via cross-sample mixing and disentanglement. Theoretical analysis and experiments verify RiSe, which achieves state-of-the-art cross-domain performance.
Abstract:Event cameras sense brightness changes and output binary asynchronous event streams, attracting increasing attention. Their bio-inspired dynamics align well with spiking neural networks (SNNs), offering a promising energy-efficient alternative to conventional vision systems. However, SNNs remain costly to train due to temporal coding, which limits their practical deployment. To alleviate the high training cost of SNNs, we introduce \textbf{PACE} (Phase-Aligned Condensation for Events), the first dataset distillation framework to SNNs and event-based vision. PACE distills a large training dataset into a compact synthetic one that enables fast SNN training, which is achieved by two core modules: \textbf{ST-DSM} and \textbf{PEQ-N}. ST-DSM uses residual membrane potentials to densify spike-based features (SDR) and to perform fine-grained spatiotemporal matching of amplitude and phase (ST-SM), while PEQ-N provides a plug-and-play straight through probabilistic integer quantizer compatible with standard event-frame pipelines. Across DVS-Gesture, CIFAR10-DVS, and N-MNIST datasets, PACE outperforms existing coreset selection and dataset distillation baselines, with particularly strong gains on dynamic event streams and at low or moderate IPC. Specifically, on N-MNIST, it achieves \(84.4\%\) accuracy, about \(85\%\) of the full training set performance, while reducing training time by more than \(50\times\) and storage cost by \(6000\times\), yielding compact surrogates that enable minute-scale SNN training and efficient edge deployment.