Abstract:Recent advancements in deep learning-based compression techniques have surpassed traditional methods. However, deep neural networks remain vulnerable to backdoor attacks, where pre-defined triggers induce malicious behaviors. This paper introduces a novel frequency-based trigger injection model for launching backdoor attacks with multiple triggers on learned image compression models. Inspired by the widely used DCT in compression codecs, triggers are embedded in the DCT domain. We design attack objectives tailored to diverse scenarios, including: 1) degrading compression quality in terms of bit-rate and reconstruction accuracy; 2) targeting task-driven measures like face recognition and semantic segmentation. To improve training efficiency, we propose a dynamic loss function that balances loss terms with fewer hyper-parameters, optimizing attack objectives effectively. For advanced scenarios, we evaluate the attack's resistance to defensive preprocessing and propose a two-stage training schedule with robust frequency selection to enhance resilience. To improve cross-model and cross-domain transferability for downstream tasks, we adjust the classification boundary in the attack loss during training. Experiments show that our trigger injection models, combined with minor modifications to encoder parameters, successfully inject multiple backdoors and their triggers into a single compression model, demonstrating strong performance and versatility. (*Due to the notification of arXiv "The Abstract field cannot be longer than 1,920 characters", the appeared Abstract is shortened. For the full Abstract, please download the Article.)
Abstract:Deep neural networks are proven to be vulnerable to data poisoning attacks. Recently, a specific type of data poisoning attack known as availability attacks has led to the failure of data utilization for model learning by adding imperceptible perturbations to images. Consequently, it is quite beneficial and challenging to detect poisoned samples, also known as Unlearnable Examples (UEs), from a mixed dataset. In response, we propose an Iterative Filtering approach for UEs identification. This method leverages the distinction between the inherent semantic mapping rules and shortcuts, without the need for any additional information. We verify that when training a classifier on a mixed dataset containing both UEs and clean data, the model tends to quickly adapt to the UEs compared to the clean data. Due to the accuracy gaps between training with clean/poisoned samples, we employ a model to misclassify clean samples while correctly identifying the poisoned ones. The incorporation of additional classes and iterative refinement enhances the model's ability to differentiate between clean and poisoned samples. Extensive experiments demonstrate the superiority of our method over state-of-the-art detection approaches across various attacks, datasets, and poison ratios, significantly reducing the Half Total Error Rate (HTER) compared to existing methods.
Abstract:Despite the recent advancements in Multi-modal Large Language Models (MLLMs), understanding inter-object relations, i.e., interactions or associations between distinct objects, remains a major challenge for such models. This issue significantly hinders their advanced reasoning capabilities and is primarily due to the lack of large-scale, high-quality, and diverse multi-modal data essential for training and evaluating MLLMs. In this paper, we provide a taxonomy of inter-object relations and introduce Multi-Modal Relation Understanding (MMRel), a comprehensive dataset designed to bridge this gap by providing large-scale, high-quality and diverse data for studying inter-object relations with MLLMs. MMRel features three distinctive attributes: (i) It includes over 15K question-answer pairs, which are sourced from three distinct domains, ensuring large scale and high diversity; (ii) It contains a subset featuring highly unusual relations, on which MLLMs often fail due to hallucinations, thus are very challenging; (iii) It provides manually verified high-quality labels for inter-object relations. Thanks to these features, MMRel is ideal for evaluating MLLMs on relation understanding, as well as being used to fine-tune MLLMs to enhance relation understanding and even benefit overall performance in various vision-language tasks. Extensive experiments on various popular MLLMs validate the effectiveness of MMRel. Both MMRel dataset and the complete labeling scripts have been made publicly available.
Abstract:Unlearnable examples (UEs) seek to maximize testing error by making subtle modifications to training examples that are correctly labeled. Defenses against these poisoning attacks can be categorized based on whether specific interventions are adopted during training. The first approach is training-time defense, such as adversarial training, which can mitigate poisoning effects but is computationally intensive. The other approach is pre-training purification, e.g., image short squeezing, which consists of several simple compressions but often encounters challenges in dealing with various UEs. Our work provides a novel disentanglement mechanism to build an efficient pre-training purification method. Firstly, we uncover rate-constrained variational autoencoders (VAEs), demonstrating a clear tendency to suppress the perturbations in UEs. We subsequently conduct a theoretical analysis for this phenomenon. Building upon these insights, we introduce a disentangle variational autoencoder (D-VAE), capable of disentangling the perturbations with learnable class-wise embeddings. Based on this network, a two-stage purification approach is naturally developed. The first stage focuses on roughly eliminating perturbations, while the second stage produces refined, poison-free results, ensuring effectiveness and robustness across various scenarios. Extensive experiments demonstrate the remarkable performance of our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset. Code is available at https://github.com/yuyi-sd/D-VAE.
Abstract:Cross-Domain Few-Shot Segmentation (CD-FSS) poses the challenge of segmenting novel categories from a distinct domain using only limited exemplars. In this paper, we undertake a comprehensive study of CD-FSS and uncover two crucial insights: (i) the necessity of a fine-tuning stage to effectively transfer the learned meta-knowledge across domains, and (ii) the overfitting risk during the na\"ive fine-tuning due to the scarcity of novel category examples. With these insights, we propose a novel cross-domain fine-tuning strategy that addresses the challenging CD-FSS tasks. We first design Bi-directional Few-shot Prediction (BFP), which establishes support-query correspondence in a bi-directional manner, crafting augmented supervision to reduce the overfitting risk. Then we further extend BFP into Iterative Few-shot Adaptor (IFA), which is a recursive framework to capture the support-query correspondence iteratively, targeting maximal exploitation of supervisory signals from the sparse novel category samples. Extensive empirical evaluations show that our method significantly outperforms the state-of-the-arts (+7.8\%), which verifies that IFA tackles the cross-domain challenges and mitigates the overfitting simultaneously. Code will be made available.
Abstract:Large-scale text-to-image (T2I) diffusion models have showcased incredible capabilities in generating coherent images based on textual descriptions, enabling vast applications in content generation. While recent advancements have introduced control over factors such as object localization, posture, and image contours, a crucial gap remains in our ability to control the interactions between objects in the generated content. Well-controlling interactions in generated images could yield meaningful applications, such as creating realistic scenes with interacting characters. In this work, we study the problems of conditioning T2I diffusion models with Human-Object Interaction (HOI) information, consisting of a triplet label (person, action, object) and corresponding bounding boxes. We propose a pluggable interaction control model, called InteractDiffusion that extends existing pre-trained T2I diffusion models to enable them being better conditioned on interactions. Specifically, we tokenize the HOI information and learn their relationships via interaction embeddings. A conditioning self-attention layer is trained to map HOI tokens to visual tokens, thereby conditioning the visual tokens better in existing T2I diffusion models. Our model attains the ability to control the interaction and location on existing T2I diffusion models, which outperforms existing baselines by a large margin in HOI detection score, as well as fidelity in FID and KID. Project page: https://jiuntian.github.io/interactdiffusion.
Abstract:Deep neural networks are likely to fail when the test data is corrupted in real-world deployment (e.g., blur, weather, etc.). Test-time optimization is an effective way that adapts models to generalize to corrupted data during testing, which has been shown in the image domain. However, the techniques for improving video classification corruption robustness remain few. In this work, we propose a Temporal Coherent Test-time Optimization framework (TeCo) to utilize spatio-temporal information in test-time optimization for robust video classification. To exploit information in video with self-supervised learning, TeCo uses global content from video clips and optimizes models for entropy minimization. TeCo minimizes the entropy of the prediction based on the global content from video clips. Meanwhile, it also feeds local content to regularize the temporal coherence at the feature level. TeCo retains the generalization ability of various video classification models and achieves significant improvements in corruption robustness across Mini Kinetics-C and Mini SSV2-C. Furthermore, TeCo sets a new baseline in video classification corruption robustness via test-time optimization.
Abstract:Rain removal aims to remove rain streaks from images/videos and reduce the disruptive effects caused by rain. It not only enhances image/video visibility but also allows many computer vision algorithms to function properly. This paper makes the first attempt to conduct a comprehensive study on the robustness of deep learning-based rain removal methods against adversarial attacks. Our study shows that, when the image/video is highly degraded, rain removal methods are more vulnerable to the adversarial attacks as small distortions/perturbations become less noticeable or detectable. In this paper, we first present a comprehensive empirical evaluation of various methods at different levels of attacks and with various losses/targets to generate the perturbations from the perspective of human perception and machine analysis tasks. A systematic evaluation of key modules in existing methods is performed in terms of their robustness against adversarial attacks. From the insights of our analysis, we construct a more robust deraining method by integrating these effective modules. Finally, we examine various types of adversarial attacks that are specific to deraining problems and their effects on both human and machine vision tasks, including 1) rain region attacks, adding perturbations only in the rain regions to make the perturbations in the attacked rain images less visible; 2) object-sensitive attacks, adding perturbations only in regions near the given objects. Code is available at https://github.com/yuyi-sd/Robust_Rain_Removal.
Abstract:Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision, such as image/video classification. The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr. However, these samples often tend to contain incorrect labels (i.e. noisy labels), which will significantly degrade the network performance. In this paper, the attention-aware noisy label learning approach ($A^2NL$) is proposed to improve the discriminative capability of the network trained on datasets with potential label noise. Specifically, a Noise-Attention model, which contains multiple noise-specific units, is designed to better capture noisy information. Each unit is expected to learn a specific noisy distribution for a subset of images so that different disturbances are more precisely modeled. Furthermore, a recursive learning process is introduced to strengthen the learning ability of the attention network by taking advantage of the learned high-level knowledge. To fully evaluate the proposed method, we conduct experiments from two aspects: manually flipped label noise on large-scale image classification datasets, including CIFAR-10, SVHN; and real-world label noise on an online crawled clothing dataset with multiple attributes. The superior results over state-of-the-art methods validate the effectiveness of our proposed approach.
Abstract:Large scale object detection datasets are constantly increasing their size in terms of the number of classes and annotations count. Yet, the number of object-level categories annotated in detection datasets is an order of magnitude smaller than image-level classification labels. State-of-the art object detection models are trained in a supervised fashion and this limits the number of object classes they can detect. In this paper, we propose a novel weight transfer network (WTN) to effectively and efficiently transfer knowledge from classification network's weights to detection network's weights to allow detection of novel classes without box supervision. We first introduce input and feature normalization schemes to curb the under-fitting during training of a vanilla WTN. We then propose autoencoder-WTN (AE-WTN) which uses reconstruction loss to preserve classification network's information over all classes in the target latent space to ensure generalization to novel classes. Compared to vanilla WTN, AE-WTN obtains absolute performance gains of 6% on two Open Images evaluation sets with 500 seen and 57 novel classes respectively, and 25% on a Visual Genome evaluation set with 200 novel classes. The code is available at https://github.com/xternalz/AE-WTN.