Abstract:No-Reference Image Quality Assessment (NR-IQA), responsible for assessing the quality of a single input image without using any reference, plays a critical role in evaluating and optimizing computer vision systems, e.g., low-light enhancement. Recent research indicates that NR-IQA models are susceptible to adversarial attacks, which can significantly alter predicted scores with visually imperceptible perturbations. Despite revealing vulnerabilities, these attack methods have limitations, including high computational demands, untargeted manipulation, limited practical utility in white-box scenarios, and reduced effectiveness in black-box scenarios. To address these challenges, we shift our focus to another significant threat and present a novel poisoning-based backdoor attack against NR-IQA (BAIQA), allowing the attacker to manipulate the IQA model's output to any desired target value by simply adjusting a scaling coefficient $\alpha$ for the trigger. We propose to inject the trigger in the discrete cosine transform (DCT) domain to improve the local invariance of the trigger for countering trigger diminishment in NR-IQA models due to widely adopted data augmentations. Furthermore, the universal adversarial perturbations (UAP) in the DCT space are designed as the trigger, to increase IQA model susceptibility to manipulation and improve attack effectiveness. In addition to the heuristic method for poison-label BAIQA (P-BAIQA), we explore the design of clean-label BAIQA (C-BAIQA), focusing on $\alpha$ sampling and image data refinement, driven by theoretical insights we reveal. Extensive experiments on diverse datasets and various NR-IQA models demonstrate the effectiveness of our attacks. Code will be released at https://github.com/yuyi-sd/BAIQA.
Abstract:Existing prompt learning methods in Vision-Language Models (VLM) have effectively enhanced the transfer capability of VLM to downstream tasks, but they suffer from a significant decline in generalization due to severe overfitting. To address this issue, we propose a framework named LOBG for vision-language models. Specifically, we use CLIP to filter out fine-grained foreground information that might cause overfitting, thereby guiding prompts with basic visual concepts. To further mitigate overfitting, we devel oped a structural topology preservation (STP) loss at the feature level, which endows the feature space with overall plasticity, allowing effective reshaping of the feature space during optimization. Additionally, we employed hierarchical logit distilation (HLD) at the output level to constrain outputs, complementing STP at the output end. Extensive experimental results demonstrate that our method significantly improves generalization capability and alleviates overfitting compared to state-of-the-art approaches.
Abstract:Face Anti-Spoofing (FAS) research is challenged by the cross-domain problem, where there is a domain gap between the training and testing data. While recent FAS works are mainly model-centric, focusing on developing domain generalization algorithms for improving cross-domain performance, data-centric research for face anti-spoofing, improving generalization from data quality and quantity, is largely ignored. Therefore, our work starts with data-centric FAS by conducting a comprehensive investigation from the data perspective for improving cross-domain generalization of FAS models. More specifically, at first, based on physical procedures of capturing and recapturing, we propose task-specific FAS data augmentation (FAS-Aug), which increases data diversity by synthesizing data of artifacts, such as printing noise, color distortion, moir\'e pattern, \textit{etc}. Our experiments show that using our FAS augmentation can surpass traditional image augmentation in training FAS models to achieve better cross-domain performance. Nevertheless, we observe that models may rely on the augmented artifacts, which are not environment-invariant, and using FAS-Aug may have a negative effect. As such, we propose Spoofing Attack Risk Equalization (SARE) to prevent models from relying on certain types of artifacts and improve the generalization performance. Last but not least, our proposed FAS-Aug and SARE with recent Vision Transformer backbones can achieve state-of-the-art performance on the FAS cross-domain generalization protocols. The implementation is available at https://github.com/RizhaoCai/FAS_Aug.
Abstract:Skeleton Action Recognition (SAR) has attracted significant interest for its efficient representation of the human skeletal structure. Despite its advancements, recent studies have raised security concerns in SAR models, particularly their vulnerability to adversarial attacks. However, such strategies are limited to digital scenarios and ineffective in physical attacks, limiting their real-world applicability. To investigate the vulnerabilities of SAR in the physical world, we introduce the Physical Skeleton Backdoor Attacks (PSBA), the first exploration of physical backdoor attacks against SAR. Considering the practicalities of physical execution, we introduce a novel trigger implantation method that integrates infrequent and imperceivable actions as triggers into the original skeleton data. By incorporating a minimal amount of this manipulated data into the training set, PSBA enables the system misclassify any skeleton sequences into the target class when the trigger action is present. We examine the resilience of PSBA in both poisoned and clean-label scenarios, demonstrating its efficacy across a range of datasets, poisoning ratios, and model architectures. Additionally, we introduce a trigger-enhancing strategy to strengthen attack performance in the clean label setting. The robustness of PSBA is tested against three distinct backdoor defenses, and the stealthiness of PSBA is evaluated using two quantitative metrics. Furthermore, by employing a Kinect V2 camera, we compile a dataset of human actions from the real world to mimic physical attack situations, with our findings confirming the effectiveness of our proposed attacks. Our project website can be found at https://qichenzheng.github.io/psba-website.
Abstract:Deep neural networks are proven to be vulnerable to data poisoning attacks. Recently, a specific type of data poisoning attack known as availability attacks has led to the failure of data utilization for model learning by adding imperceptible perturbations to images. Consequently, it is quite beneficial and challenging to detect poisoned samples, also known as Unlearnable Examples (UEs), from a mixed dataset. In response, we propose an Iterative Filtering approach for UEs identification. This method leverages the distinction between the inherent semantic mapping rules and shortcuts, without the need for any additional information. We verify that when training a classifier on a mixed dataset containing both UEs and clean data, the model tends to quickly adapt to the UEs compared to the clean data. Due to the accuracy gaps between training with clean/poisoned samples, we employ a model to misclassify clean samples while correctly identifying the poisoned ones. The incorporation of additional classes and iterative refinement enhances the model's ability to differentiate between clean and poisoned samples. Extensive experiments demonstrate the superiority of our method over state-of-the-art detection approaches across various attacks, datasets, and poison ratios, significantly reducing the Half Total Error Rate (HTER) compared to existing methods.
Abstract:Face retouching aims to remove facial blemishes, such as pigmentation and acne, and still retain fine-grain texture details. Nevertheless, existing methods just remove the blemishes but focus little on realism of the intermediate process, limiting their use more to beautifying facial images on social media rather than being effective tools for simulating changes in facial pigmentation and ance. Motivated by this limitation, we propose our Controllable and Gradual Face Retouching (CGFR). Our CGFR is based on physical modelling, adopting Sum-of-Gaussians to approximate skin subsurface scattering in a decomposed melanin and haemoglobin color space. Our CGFR offers a user-friendly control over the facial blemishes, achieving realistic and gradual blemishes retouching. Experimental results based on actual clinical data shows that CGFR can realistically simulate the blemishes' gradual recovering process.
Abstract:Novel view synthesis from raw images provides superior high dynamic range (HDR) information compared to reconstructions from low dynamic range RGB images. However, the inherent noise in unprocessed raw images compromises the accuracy of 3D scene representation. Our study reveals that 3D Gaussian Splatting (3DGS) is particularly susceptible to this noise, leading to numerous elongated Gaussian shapes that overfit the noise, thereby significantly degrading reconstruction quality and reducing inference speed, especially in scenarios with limited views. To address these issues, we introduce a novel self-supervised learning framework designed to reconstruct HDR 3DGS from a limited number of noisy raw images. This framework enhances 3DGS by integrating a noise extractor and employing a noise-robust reconstruction loss that leverages a noise distribution prior. Experimental results show that our method outperforms LDR/HDR 3DGS and previous state-of-the-art (SOTA) self-supervised and supervised pre-trained models in both reconstruction quality and inference speed on the RawNeRF dataset across a broad range of training views. Code can be found in \url{https://lizhihao6.github.io/Raw3DGS}.
Abstract:Concept Bottleneck Models (CBM) map the input image to a high-level human-understandable concept space and then make class predictions based on these concepts. Recent approaches automate the construction of CBM by prompting Large Language Models (LLM) to generate text concepts and then use Vision Language Models (VLM) to obtain concept scores to train a CBM. However, it is desired to build CBMs with concepts defined by human experts instead of LLM generated concepts to make them more trustworthy. In this work, we take a closer inspection on the faithfulness of VLM concept scores for such expert-defined concepts in domains like fine-grain bird species classification and animal classification. Our investigations reveal that frozen VLMs, like CLIP, struggle to correctly associate a concept to the corresponding visual input despite achieving a high classification performance. To address this, we propose a novel Contrastive Semi-Supervised (CSS) learning method which uses a few labeled concept examples to improve concept alignment (activate truthful visual concepts) in CLIP model. Extensive experiments on three benchmark datasets show that our approach substantially increases the concept accuracy and classification accuracy, yet requires only a fraction of the human-annotated concept labels. To further improve the classification performance, we also introduce a new class-level intervention procedure for fine-grain classification problems that identifies the confounding classes and intervenes their concept space to reduce errors.
Abstract:The widespread availability of publicly accessible medical images has significantly propelled advancements in various research and clinical fields. Nonetheless, concerns regarding unauthorized training of AI systems for commercial purposes and the duties of patient privacy protection have led numerous institutions to hesitate to share their images. This is particularly true for medical image segmentation (MIS) datasets, where the processes of collection and fine-grained annotation are time-intensive and laborious. Recently, Unlearnable Examples (UEs) methods have shown the potential to protect images by adding invisible shortcuts. These shortcuts can prevent unauthorized deep neural networks from generalizing. However, existing UEs are designed for natural image classification and fail to protect MIS datasets imperceptibly as their protective perturbations are less learnable than important prior knowledge in MIS, e.g., contour and texture features. To this end, we propose an Unlearnable Medical image generation method, termed UMed. UMed integrates the prior knowledge of MIS by injecting contour- and texture-aware perturbations to protect images. Given that our target is to only poison features critical to MIS, UMed requires only minimal perturbations within the ROI and its contour to achieve greater imperceptibility (average PSNR is 50.03) and protective performance (clean average DSC degrades from 82.18% to 6.80%).
Abstract:Face Anti-Spoofing (FAS) is crucial for securing face recognition systems against presentation attacks. With advancements in sensor manufacture and multi-modal learning techniques, many multi-modal FAS approaches have emerged. However, they face challenges in generalizing to unseen attacks and deployment conditions. These challenges arise from (1) modality unreliability, where some modality sensors like depth and infrared undergo significant domain shifts in varying environments, leading to the spread of unreliable information during cross-modal feature fusion, and (2) modality imbalance, where training overly relies on a dominant modality hinders the convergence of others, reducing effectiveness against attack types that are indistinguishable sorely using the dominant modality. To address modality unreliability, we propose the Uncertainty-Guided Cross-Adapter (U-Adapter) to recognize unreliably detected regions within each modality and suppress the impact of unreliable regions on other modalities. For modality imbalance, we propose a Rebalanced Modality Gradient Modulation (ReGrad) strategy to rebalance the convergence speed of all modalities by adaptively adjusting their gradients. Besides, we provide the first large-scale benchmark for evaluating multi-modal FAS performance under domain generalization scenarios. Extensive experiments demonstrate that our method outperforms state-of-the-art methods. Source code and protocols will be released on https://github.com/OMGGGGG/mmdg.