Abstract:Face retouching aims to remove facial blemishes, such as pigmentation and acne, and still retain fine-grain texture details. Nevertheless, existing methods just remove the blemishes but focus little on realism of the intermediate process, limiting their use more to beautifying facial images on social media rather than being effective tools for simulating changes in facial pigmentation and ance. Motivated by this limitation, we propose our Controllable and Gradual Face Retouching (CGFR). Our CGFR is based on physical modelling, adopting Sum-of-Gaussians to approximate skin subsurface scattering in a decomposed melanin and haemoglobin color space. Our CGFR offers a user-friendly control over the facial blemishes, achieving realistic and gradual blemishes retouching. Experimental results based on actual clinical data shows that CGFR can realistically simulate the blemishes' gradual recovering process.
Abstract:Simulating the effects of skincare products on face is a potential new way to communicate the efficacy of skincare products in skin diagnostics and product recommendations. Furthermore, such simulations enable one to anticipate his/her skin conditions and better manage skin health. However, there is a lack of effective simulations today. In this paper, we propose the first simulation model to reveal facial pore changes after using skincare products. Our simulation pipeline consists of 2 steps: training data establishment and facial pore simulation. To establish training data, we collect face images with various pore quality indexes from short-term (8-weeks) clinical studies. People often experience significant skin fluctuations (due to natural rhythms, external stressors, etc.,), which introduces large perturbations in clinical data. To address this problem, we propose a sliding window mechanism to clean data and select representative index(es) to represent facial pore changes. Facial pore simulation stage consists of 3 modules: UNet-based segmentation module to localize facial pores; regression module to predict time-dependent warping hyperparameters; and deformation module, taking warping hyperparameters and pore segmentation labels as inputs, to precisely deform pores accordingly. The proposed simulation is able to render realistic facial pore changes. And this work will pave the way for future research in facial skin simulation and skincare product developments.