Abstract:A key aspect of Safe Reinforcement Learning (Safe RL) involves estimating the constraint condition for the next policy, which is crucial for guiding the optimization of safe policy updates. However, the existing Advantage-based Estimation (ABE) method relies on the infinite-horizon discounted advantage function. This dependence leads to catastrophic errors in finite-horizon scenarios with non-discounted constraints, resulting in safety-violation updates. In response, we propose the first estimation method for finite-horizon non-discounted constraints in deep Safe RL, termed Gradient-based Estimation (GBE), which relies on the analytic gradient derived along trajectories. Our theoretical and empirical analyses demonstrate that GBE can effectively estimate constraint changes over a finite horizon. Constructing a surrogate optimization problem with GBE, we developed a novel Safe RL algorithm called Constrained Gradient-based Policy Optimization (CGPO). CGPO identifies feasible optimal policies by iteratively resolving sub-problems within trust regions. Our empirical results reveal that CGPO, unlike baseline algorithms, successfully estimates the constraint functions of subsequent policies, thereby ensuring the efficiency and feasibility of each update.
Abstract:Autism spectrum disorder(ASD) is a pervasive developmental disorder that significantly impacts the daily functioning and social participation of individuals. Despite the abundance of research focused on supporting the clinical diagnosis of ASD, there is still a lack of systematic and comprehensive exploration in the field of methods based on Large Language Models (LLMs), particularly regarding the real-world clinical diagnostic scenarios based on Autism Diagnostic Observation Schedule, Second Edition (ADOS-2). Therefore, we have proposed a framework called ADOS-Copilot, which strikes a balance between scoring and explanation and explored the factors that influence the performance of LLMs in this task. The experimental results indicate that our proposed framework is competitive with the diagnostic results of clinicians, with a minimum MAE of 0.4643, binary classification F1-score of 81.79\%, and ternary classification F1-score of 78.37\%. Furthermore, we have systematically elucidated the strengths and limitations of current LLMs in this task from the perspectives of ADOS-2, LLMs' capabilities, language, and model scale aiming to inspire and guide the future application of LLMs in a broader fields of mental health disorders. We hope for more research to be transferred into real clinical practice, opening a window of kindness to the world for eccentric children.
Abstract:3D Gaussian Splatting is capable of reconstructing 3D scenes in minutes. Despite recent advances in improving surface reconstruction accuracy, the reconstructed results still exhibit bias and suffer from inefficiency in storage and training. This paper provides a different observation on the cause of the inefficiency and the reconstruction bias, which is attributed to the integration of the low-opacity parts (LOPs) of the generated Gaussians. We show that LOPs consist of Gaussians with overall low-opacity (LOGs) and the low-opacity tails (LOTs) of Gaussians. We propose Spiking GS to reduce such two types of LOPs by integrating spiking neurons into the Gaussian Splatting pipeline. Specifically, we introduce global and local full-precision integrate-and-fire spiking neurons to the opacity and representation function of flattened 3D Gaussians, respectively. Furthermore, we enhance the density control strategy with spiking neurons' thresholds and an new criterion on the scale of Gaussians. Our method can represent more accurate reconstructed surfaces at a lower cost. The code is available at \url{https://github.com/shippoT/Spiking_GS}.
Abstract:Although recent advancements in text-to-3D generation have significantly improved generation quality, issues like limited level of detail and low fidelity still persist, which requires further improvement. To understand the essence of those issues, we thoroughly analyze current score distillation methods by connecting theories of consistency distillation to score distillation. Based on the insights acquired through analysis, we propose an optimization framework, Guided Consistency Sampling (GCS), integrated with 3D Gaussian Splatting (3DGS) to alleviate those issues. Additionally, we have observed the persistent oversaturation in the rendered views of generated 3D assets. From experiments, we find that it is caused by unwanted accumulated brightness in 3DGS during optimization. To mitigate this issue, we introduce a Brightness-Equalized Generation (BEG) scheme in 3DGS rendering. Experimental results demonstrate that our approach generates 3D assets with more details and higher fidelity than state-of-the-art methods. The codes are released at https://github.com/LMozart/ECCV2024-GCS-BEG.
Abstract:Policy-based methods have achieved remarkable success in solving challenging reinforcement learning problems. Among these methods, off-policy policy gradient methods are particularly important due to that they can benefit from off-policy data. However, these methods suffer from the high variance of the off-policy policy gradient (OPPG) estimator, which results in poor sample efficiency during training. In this paper, we propose an off-policy policy gradient method with the optimal action-dependent baseline (Off-OAB) to mitigate this variance issue. Specifically, this baseline maintains the OPPG estimator's unbiasedness while theoretically minimizing its variance. To enhance practical computational efficiency, we design an approximated version of this optimal baseline. Utilizing this approximation, our method (Off-OAB) aims to decrease the OPPG estimator's variance during policy optimization. We evaluate the proposed Off-OAB method on six representative tasks from OpenAI Gym and MuJoCo, where it demonstrably surpasses state-of-the-art methods on the majority of these tasks.
Abstract:Natural Light Uncalibrated Photometric Stereo (NaUPS) relieves the strict environment and light assumptions in classical Uncalibrated Photometric Stereo (UPS) methods. However, due to the intrinsic ill-posedness and high-dimensional ambiguities, addressing NaUPS is still an open question. Existing works impose strong assumptions on the environment lights and objects' material, restricting the effectiveness in more general scenarios. Alternatively, some methods leverage supervised learning with intricate models while lacking interpretability, resulting in a biased estimation. In this work, we proposed Spin Light Uncalibrated Photometric Stereo (Spin-UP), an unsupervised method to tackle NaUPS in various environment lights and objects. The proposed method uses a novel setup that captures the object's images on a rotatable platform, which mitigates NaUPS's ill-posedness by reducing unknowns and provides reliable priors to alleviate NaUPS's ambiguities. Leveraging neural inverse rendering and the proposed training strategies, Spin-UP recovers surface normals, environment light, and isotropic reflectance under complex natural light with low computational cost. Experiments have shown that Spin-UP outperforms other supervised / unsupervised NaUPS methods and achieves state-of-the-art performance on synthetic and real-world datasets. Codes and data are available at https://github.com/LMozart/CVPR2024-SpinUP.
Abstract:Recent advancement in computer vision has significantly lowered the barriers to artistic creation. Exemplar-based image translation methods have attracted much attention due to flexibility and controllability. However, these methods hold assumptions regarding semantics or require semantic information as the input, while accurate semantics is not easy to obtain in artistic images. Besides, these methods suffer from cross-domain artifacts due to training data prior and generate imprecise structure due to feature compression in the spatial domain. In this paper, we propose an arbitrary Style Image Manipulation Network (SIM-Net), which leverages semantic-free information as guidance and a region transportation strategy in a self-supervised manner for image generation. Our method balances computational efficiency and high resolution to a certain extent. Moreover, our method facilitates zero-shot style image manipulation. Both qualitative and quantitative experiments demonstrate the superiority of our method over state-of-the-art methods.Code is available at https://github.com/SnailForce/SIM-Net.
Abstract:Panoramic imaging research on geometry recovery and High Dynamic Range (HDR) reconstruction becomes a trend with the development of Extended Reality (XR). Neural Radiance Fields (NeRF) provide a promising scene representation for both tasks without requiring extensive prior data. However, in the case of inputting sparse Low Dynamic Range (LDR) panoramic images, NeRF often degrades with under-constrained geometry and is unable to reconstruct HDR radiance from LDR inputs. We observe that the radiance from each pixel in panoramic images can be modeled as both a signal to convey scene lighting information and a light source to illuminate other pixels. Hence, we propose the irradiance fields from sparse LDR panoramic images, which increases the observation counts for faithful geometry recovery and leverages the irradiance-radiance attenuation for HDR reconstruction. Extensive experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction and validate their effectiveness. Furthermore, we show a promising byproduct of spatially-varying lighting estimation. The code is available at https://github.com/Lu-Zhan/Pano-NeRF.
Abstract:Factuality is a crucial requirement in information seeking dialogue: the system should respond to the user's queries so that the responses are meaningful and aligned with the knowledge provided to the system. However, most modern large language models suffer from hallucinations, that is, they generate responses not supported by or contradicting the knowledge source. To mitigate the issue and increase faithfulness of information-seeking dialogue systems, we introduce BeInfo, a simple yet effective method that applies behavioural tuning to aid information-seeking dialogue. Relying on three standard datasets, we show that models tuned with BeInfo} become considerably more faithful to the knowledge source both for datasets and domains seen during BeInfo-tuning, as well as on unseen domains, when applied in a zero-shot manner. In addition, we show that the models with 3B parameters (e.g., Flan-T5) tuned with BeInfo demonstrate strong performance on data from real `production' conversations and outperform GPT4 when tuned on a limited amount of such realistic in-domain dialogues.
Abstract:A crucial reason for the success of existing NeRF-based methods is to build a neural density field for the geometry representation via multiple perceptron layers (MLPs). MLPs are continuous functions, however, real geometry or density field is frequently discontinuous at the interface between the air and the surface. Such a contrary brings the problem of unfaithful geometry representation. To this end, this paper proposes spiking NeRF, which leverages spiking neuron and a hybrid Artificial Neural Network (ANN)-Spiking Neural Network (SNN) framework to build a discontinuous density field for faithful geometry representation. Specifically, we first demonstrate the reason why continuous density fields will bring inaccuracy. Then, we propose to use the spiking neurons to build a discontinuous density field. We conduct comprehensive analysis for the problem of existing spiking neuron models and then provide the numerical relationship between the parameter of spiking neuron and the theoretical accuracy of geometry, Based on this, we propose a bounded spiking neuron to build the discontinuous density field. Our results achieve SOTA performance. Our code and data will be released to the public.