Abstract:Few-Shot Learning (FSL) aims to recognize new classes with limited labeled data. Recent studies have attempted to address the challenge of rare samples with textual prompts to modulate visual features. However, they usually struggle to capture complex semantic relationships between textual and visual features. Moreover, vanilla self-attention is heavily affected by useless information in images, severely constraining the potential of semantic priors in FSL due to the confusion of numerous irrelevant tokens during interaction. To address these aforementioned issues, a K-NN Transformer with Pyramid Prompts (KTPP) is proposed to select discriminative information with K-NN Context Attention (KCA) and adaptively modulate visual features with Pyramid Cross-modal Prompts (PCP). First, for each token, the KCA only selects the K most relevant tokens to compute the self-attention matrix and incorporates the mean of all tokens as the context prompt to provide the global context in three cascaded stages. As a result, irrelevant tokens can be progressively suppressed. Secondly, pyramid prompts are introduced in the PCP to emphasize visual features via interactions between text-based class-aware prompts and multi-scale visual features. This allows the ViT to dynamically adjust the importance weights of visual features based on rich semantic information at different scales, making models robust to spatial variations. Finally, augmented visual features and class-aware prompts are interacted via the KCA to extract class-specific features. Consequently, our model further enhances noise-free visual representations via deep cross-modal interactions, extracting generalized visual representation in scenarios with few labeled samples. Extensive experiments on four benchmark datasets demonstrate the effectiveness of our method.
Abstract:Semi-supervised learning can significantly boost model performance by leveraging unlabeled data, particularly when labeled data is scarce. However, real-world unlabeled data often contain unseen-class samples, which can hinder the classification of seen classes. To address this issue, mainstream safe SSL methods suggest detecting and discarding unseen-class samples from unlabeled data. Nevertheless, these methods typically employ a single-model strategy to simultaneously tackle both the classification of seen classes and the detection of unseen classes. Our research indicates that such an approach may lead to conflicts during training, resulting in suboptimal model optimization. Inspired by this, we introduce a novel framework named Diverse Teacher-Students (\textbf{DTS}), which uniquely utilizes dual teacher-student models to individually and effectively handle these two tasks. DTS employs a novel uncertainty score to softly separate unseen-class and seen-class data from the unlabeled set, and intelligently creates an additional ($K$+1)-th class supervisory signal for training. By training both teacher-student models with all unlabeled samples, DTS can enhance the classification of seen classes while simultaneously improving the detection of unseen classes. Comprehensive experiments demonstrate that DTS surpasses baseline methods across a variety of datasets and configurations. Our code and models can be publicly accessible on the link https://github.com/Zhanlo/DTS.
Abstract:Noisy labels significantly hinder the accuracy and generalization of machine learning models, particularly due to ambiguous instance features. Traditional techniques that attempt to correct noisy labels directly, such as those using transition matrices, often fail to address the inherent complexities of the problem sufficiently. In this paper, we introduce EchoAlign, a transformative paradigm shift in learning from noisy labels. Instead of focusing on label correction, EchoAlign treats noisy labels ($\tilde{Y}$) as accurate and modifies corresponding instance features ($X$) to achieve better alignment with $\tilde{Y}$. EchoAlign's core components are (1) EchoMod: Employing controllable generative models, EchoMod precisely modifies instances while maintaining their intrinsic characteristics and ensuring alignment with the noisy labels. (2) EchoSelect: Instance modification inevitably introduces distribution shifts between training and test sets. EchoSelect maintains a significant portion of clean original instances to mitigate these shifts. It leverages the distinct feature similarity distributions between original and modified instances as a robust tool for accurate sample selection. This integrated approach yields remarkable results. In environments with 30% instance-dependent noise, even at 99% selection accuracy, EchoSelect retains nearly twice the number of samples compared to the previous best method. Notably, on three datasets, EchoAlign surpasses previous state-of-the-art techniques with a substantial improvement.
Abstract:Policy-based methods have achieved remarkable success in solving challenging reinforcement learning problems. Among these methods, off-policy policy gradient methods are particularly important due to that they can benefit from off-policy data. However, these methods suffer from the high variance of the off-policy policy gradient (OPPG) estimator, which results in poor sample efficiency during training. In this paper, we propose an off-policy policy gradient method with the optimal action-dependent baseline (Off-OAB) to mitigate this variance issue. Specifically, this baseline maintains the OPPG estimator's unbiasedness while theoretically minimizing its variance. To enhance practical computational efficiency, we design an approximated version of this optimal baseline. Utilizing this approximation, our method (Off-OAB) aims to decrease the OPPG estimator's variance during policy optimization. We evaluate the proposed Off-OAB method on six representative tasks from OpenAI Gym and MuJoCo, where it demonstrably surpasses state-of-the-art methods on the majority of these tasks.
Abstract:MTL is a learning paradigm that effectively leverages both task-specific and shared information to address multiple related tasks simultaneously. In contrast to STL, MTL offers a suite of benefits that enhance both the training process and the inference efficiency. MTL's key advantages encompass streamlined model architecture, performance enhancement, and cross-domain generalizability. Over the past twenty years, MTL has become widely recognized as a flexible and effective approach in various fields, including CV, NLP, recommendation systems, disease prognosis and diagnosis, and robotics. This survey provides a comprehensive overview of the evolution of MTL, encompassing the technical aspects of cutting-edge methods from traditional approaches to deep learning and the latest trend of pretrained foundation models. Our survey methodically categorizes MTL techniques into five key areas: regularization, relationship learning, feature propagation, optimization, and pre-training. This categorization not only chronologically outlines the development of MTL but also dives into various specialized strategies within each category. Furthermore, the survey reveals how the MTL evolves from handling a fixed set of tasks to embracing a more flexible approach free from task or modality constraints. It explores the concepts of task-promptable and -agnostic training, along with the capacity for ZSL, which unleashes the untapped potential of this historically coveted learning paradigm. Overall, we hope this survey provides the research community with a comprehensive overview of the advancements in MTL from its inception in 1997 to the present in 2023. We address present challenges and look ahead to future possibilities, shedding light on the opportunities and potential avenues for MTL research in a broad manner. This project is publicly available at https://github.com/junfish/Awesome-Multitask-Learning.
Abstract:Few-shot OOD detection focuses on recognizing out-of-distribution (OOD) images that belong to classes unseen during training, with the use of only a small number of labeled in-distribution (ID) images. Up to now, a mainstream strategy is based on large-scale vision-language models, such as CLIP. However, these methods overlook a crucial issue: the lack of reliable OOD supervision information, which can lead to biased boundaries between in-distribution (ID) and OOD. To tackle this problem, we propose CLIP-driven Outliers Synthesis~(CLIP-OS). Firstly, CLIP-OS enhances patch-level features' perception by newly proposed patch uniform convolution, and adaptively obtains the proportion of ID-relevant information by employing CLIP-surgery-discrepancy, thus achieving separation between ID-relevant and ID-irrelevant. Next, CLIP-OS synthesizes reliable OOD data by mixing up ID-relevant features from different classes to provide OOD supervision information. Afterward, CLIP-OS leverages synthetic OOD samples by unknown-aware prompt learning to enhance the separability of ID and OOD. Extensive experiments across multiple benchmarks demonstrate that CLIP-OS achieves superior few-shot OOD detection capability.
Abstract:In machine learning, generalization against distribution shifts -- where deployment conditions diverge from the training scenarios -- is crucial, particularly in fields like climate modeling, biomedicine, and autonomous driving. The emergence of foundation models, distinguished by their extensive pretraining and task versatility, has led to an increased interest in their adaptability to distribution shifts. GPT-4V(ision) acts as the most advanced publicly accessible multimodal foundation model, with extensive applications across various domains, including anomaly detection, video understanding, image generation, and medical diagnosis. However, its robustness against data distributions remains largely underexplored. Addressing this gap, this study rigorously evaluates GPT-4V's adaptability and generalization capabilities in dynamic environments, benchmarking against prominent models like CLIP and LLaVA. We delve into GPT-4V's zero-shot generalization across 13 diverse datasets spanning natural, medical, and molecular domains. We further investigate its adaptability to controlled data perturbations and examine the efficacy of in-context learning as a tool to enhance its adaptation. Our findings delineate GPT-4V's capability boundaries in distribution shifts, shedding light on its strengths and limitations across various scenarios. Importantly, this investigation contributes to our understanding of how AI foundation models generalize to distribution shifts, offering pivotal insights into their adaptability and robustness. Code is publicly available at https://github.com/jameszhou-gl/gpt-4v-distribution-shift.
Abstract:Imitation learning aims to solve the problem of defining reward functions in real-world decision-making tasks. The current popular approach is the Adversarial Imitation Learning (AIL) framework, which matches expert state-action occupancy measures to obtain a surrogate reward for forward reinforcement learning. However, the traditional discriminator is a simple binary classifier and doesn't learn an accurate distribution, which may result in failing to identify expert-level state-action pairs induced by the policy interacting with the environment. To address this issue, we propose a method named diffusion adversarial imitation learning (DiffAIL), which introduces the diffusion model into the AIL framework. Specifically, DiffAIL models the state-action pairs as unconditional diffusion models and uses diffusion loss as part of the discriminator's learning objective, which enables the discriminator to capture better expert demonstrations and improve generalization. Experimentally, the results show that our method achieves state-of-the-art performance and significantly surpasses expert demonstration on two benchmark tasks, including the standard state-action setting and state-only settings. Our code can be available at the link https://github.com/ML-Group-SDU/DiffAIL.
Abstract:Meta-learning methods typically follow a two-loop framework, where each loop potentially suffers from notorious overfitting, hindering rapid adaptation and generalization to new tasks. Existing schemes solve it by enhancing the mutual-exclusivity or diversity of training samples, but these data manipulation strategies are data-dependent and insufficiently flexible. This work alleviates overfitting in meta-learning from the perspective of gradient regularization and proposes a data-independent \textbf{M}eta-\textbf{G}radient \textbf{Aug}mentation (\textbf{MGAug}) method. The key idea is to first break the rote memories by network pruning to address memorization overfitting in the inner loop, and then the gradients of pruned sub-networks naturally form the high-quality augmentation of the meta-gradient to alleviate learner overfitting in the outer loop. Specifically, we explore three pruning strategies, including \textit{random width pruning}, \textit{random parameter pruning}, and a newly proposed \textit{catfish pruning} that measures a Meta-Memorization Carrying Amount (MMCA) score for each parameter and prunes high-score ones to break rote memories as much as possible. The proposed MGAug is theoretically guaranteed by the generalization bound from the PAC-Bayes framework. In addition, we extend a lightweight version, called MGAug-MaxUp, as a trade-off between performance gains and resource overhead. Extensive experiments on multiple few-shot learning benchmarks validate MGAug's effectiveness and significant improvement over various meta-baselines. The code is publicly available at \url{https://github.com/xxLifeLover/Meta-Gradient-Augmentation}.
Abstract:Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field.