Abstract:We study episodic linear mixture MDPs with the unknown transition and adversarial rewards under full-information feedback, employing dynamic regret as the performance measure. We start with in-depth analyses of the strengths and limitations of the two most popular methods: occupancy-measure-based and policy-based methods. We observe that while the occupancy-measure-based method is effective in addressing non-stationary environments, it encounters difficulties with the unknown transition. In contrast, the policy-based method can deal with the unknown transition effectively but faces challenges in handling non-stationary environments. Building on this, we propose a novel algorithm that combines the benefits of both methods. Specifically, it employs (i) an occupancy-measure-based global optimization with a two-layer structure to handle non-stationary environments; and (ii) a policy-based variance-aware value-targeted regression to tackle the unknown transition. We bridge these two parts by a novel conversion. Our algorithm enjoys an $\widetilde{\mathcal{O}}(d \sqrt{H^3 K} + \sqrt{HK(H + \bar{P}_K)})$ dynamic regret, where $d$ is the feature dimension, $H$ is the episode length, $K$ is the number of episodes, $\bar{P}_K$ is the non-stationarity measure. We show it is minimax optimal up to logarithmic factors by establishing a matching lower bound. To the best of our knowledge, this is the first work that achieves near-optimal dynamic regret for adversarial linear mixture MDPs with the unknown transition without prior knowledge of the non-stationarity measure.
Abstract:Repository-level code completion has drawn great attention in software engineering, and several benchmark datasets have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC- INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.
Abstract:Few-Shot Learning (FSL) aims to recognize new classes with limited labeled data. Recent studies have attempted to address the challenge of rare samples with textual prompts to modulate visual features. However, they usually struggle to capture complex semantic relationships between textual and visual features. Moreover, vanilla self-attention is heavily affected by useless information in images, severely constraining the potential of semantic priors in FSL due to the confusion of numerous irrelevant tokens during interaction. To address these aforementioned issues, a K-NN Transformer with Pyramid Prompts (KTPP) is proposed to select discriminative information with K-NN Context Attention (KCA) and adaptively modulate visual features with Pyramid Cross-modal Prompts (PCP). First, for each token, the KCA only selects the K most relevant tokens to compute the self-attention matrix and incorporates the mean of all tokens as the context prompt to provide the global context in three cascaded stages. As a result, irrelevant tokens can be progressively suppressed. Secondly, pyramid prompts are introduced in the PCP to emphasize visual features via interactions between text-based class-aware prompts and multi-scale visual features. This allows the ViT to dynamically adjust the importance weights of visual features based on rich semantic information at different scales, making models robust to spatial variations. Finally, augmented visual features and class-aware prompts are interacted via the KCA to extract class-specific features. Consequently, our model further enhances noise-free visual representations via deep cross-modal interactions, extracting generalized visual representation in scenarios with few labeled samples. Extensive experiments on four benchmark datasets demonstrate the effectiveness of our method.
Abstract:When observing the chip-to-free-space light beams from silicon photonics (SiPh) to free-space, manual adjustment of camera lens is often required to obtain a focused image of the light beams. In this letter, we demonstrated an auto-focusing system based on you-only-look-once (YOLO) model. The trained YOLO model exhibits high classification accuracy of 99.7% and high confidence level >0.95 when detecting light beams from SiPh gratings. A video demonstration of real-time light beam detection, real-time computation of beam width, and auto focusing of light beams are also included.
Abstract:Over the past decade, there has been extensive work in developing integrated silicon photonics (SiPh) gratings for the optical addressing of trapped ion qubits in the ion trap quantum computing community. However, when viewing beam profiles from infrared (IR) cameras, it is often difficult to determine the corresponding heights where the beam profiles are located. In this work, we developed transformer models to recognize the corresponding height categories of beam profiles of light from SiPh gratings. The model is trained using two techniques: (1) input patches, and (2) input sequence. For model trained with input patches, the model achieved recognition accuracy of 0.938. Meanwhile, model trained with input sequence shows lower accuracy of 0.895. However, when repeating the model-training 150 cycles, model trained with input patches shows inconsistent accuracy ranges between 0.445 to 0.959, while model trained with input sequence exhibit higher accuracy values between 0.789 to 0.936. The obtained outcomes can be expanded to various applications, including auto-focusing of light beam and auto-adjustment of z-axis stage to acquire desired beam profiles.
Abstract:Gradient-variation online learning aims to achieve regret guarantees that scale with the variations in the gradients of online functions, which has been shown to be crucial for attaining fast convergence in games and robustness in stochastic optimization, hence receiving increased attention. Existing results often require the smoothness condition by imposing a fixed bound on the gradient Lipschitzness, but this may not hold in practice. Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms. In this paper, we systematically study gradient-variation online learning under generalized smoothness. To this end, we extend the classic optimistic mirror descent algorithm to derive gradient-variation bounds by conducting stability analysis over the optimization trajectory and exploiting smoothness locally. Furthermore, we explore universal online learning, designing a single algorithm enjoying optimal gradient-variation regrets for convex and strongly convex functions simultaneously without knowing curvature information. The algorithm adopts a two-layer structure with a meta-algorithm running over a group of base-learners. To ensure favorable guarantees, we have designed a new meta-algorithm that is Lipschitz-adaptive to handle potentially unbounded gradients and meanwhile ensures second-order regret to cooperate with base-learners. Finally, we provide implications of our findings and obtain new results in fast-rate games and stochastic extended adversarial optimization.
Abstract:Depression is a prevalent mental health disorder that significantly impacts individuals' lives and well-being. Early detection and intervention are crucial for effective treatment and management of depression. Recently, there are many end-to-end deep learning methods leveraging the facial expression features for automatic depression detection. However, most current methods overlook the temporal dynamics of facial expressions. Although very recent 3DCNN methods remedy this gap, they introduce more computational cost due to the selection of CNN-based backbones and redundant facial features. To address the above limitations, by considering the timing correlation of facial expressions, we propose a novel framework called FacialPulse, which recognizes depression with high accuracy and speed. By harnessing the bidirectional nature and proficiently addressing long-term dependencies, the Facial Motion Modeling Module (FMMM) is designed in FacialPulse to fully capture temporal features. Since the proposed FMMM has parallel processing capabilities and has the gate mechanism to mitigate gradient vanishing, this module can also significantly boost the training speed. Besides, to effectively use facial landmarks to replace original images to decrease information redundancy, a Facial Landmark Calibration Module (FLCM) is designed to eliminate facial landmark errors to further improve recognition accuracy. Extensive experiments on the AVEC2014 dataset and MMDA dataset (a depression dataset) demonstrate the superiority of FacialPulse on recognition accuracy and speed, with the average MAE (Mean Absolute Error) decreased by 21% compared to baselines, and the recognition speed increased by 100% compared to state-of-the-art methods. Codes are released at https://github.com/volatileee/FacialPulse.
Abstract:Convolution is the core component within deep neural networks and it is computationally intensive and time consuming. Tensor data layouts significantly impact convolution operations in terms of memory access and computational efficiency. Yet, there is still a lack of comprehensive performance characterization on data layouts on SIMD architectures concerning convolution methods. This paper proposes three novel data layouts for im2win convolution: NHWC, CHWN, and CHWN8, and introduces a set of general optimization techniques for both direct and im2win convolutions. We compare the optimized im2win convolution with the direct convolution and PyTorch's im2col-based convolution across the aforementioned layouts on SIMD machines. The experiments demonstrated that the im2win convolution with the new NHWC layout achieved up to 355% performance speedup over NCHW layout. Our optimizations also significantly improve the performance of both im2win and direct convolutions. Our optimized im2win and direct convolutions achieved up to 95% and 94% of machine's theoretical peak performance, respectively.
Abstract:Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models, especially in areas where security is critical. However, traditional OOD detection methods often fail to capture complex data distributions from large scale date. In this paper, we present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP. By using these features as conditional inputs to a diffusion model, we can reconstruct the images after encoding them with CLIP. The difference between the original and reconstructed images is used as a signal for OOD identification. The practicality and scalability of our method is increased by the fact that it does not require class-specific labeled ID data, as is the case with many other methods. Extensive experiments on several benchmark datasets demonstrates the robustness and effectiveness of our method, which have significantly improved the detection accuracy.
Abstract:Real-time video analytics systems typically place models with fewer weights on edge devices to reduce latency. The distribution of video content features may change over time for various reasons (i.e. light and weather change) , leading to accuracy degradation of existing models, to solve this problem, recent work proposes a framework that uses a remote server to continually train and adapt the lightweight model at edge with the help of complex model. However, existing analytics approaches leave two challenges untouched: firstly, retraining task is compute-intensive, resulting in large model update delays; secondly, new model may not fit well enough with the data distribution of the current video stream. To address these challenges, in this paper, we present EdgeSync, EdgeSync filters the samples by considering both timeliness and inference results to make training samples more relevant to the current video content as well as reduce the update delay, to improve the quality of training, EdgeSync also designs a training management module that can efficiently adjusts the model training time and training order on the runtime. By evaluating real datasets with complex scenes, our method improves about 3.4% compared to existing methods and about 10% compared to traditional means.