Abstract:As the capabilities of code large language models (LLMs) continue to expand, their applications across diverse code intelligence domains are rapidly increasing. However, most existing datasets only evaluate limited application domains. To address this gap, we have developed a comprehensive code evaluation dataset FullStack Bench focusing on full-stack programming, which encompasses a wide range of application domains (e.g., basic programming, data analysis, software engineering, mathematics, and machine learning). Besides, to assess multilingual programming capabilities, in FullStack Bench, we design real-world instructions and corresponding unit test cases from 16 widely-used programming languages to reflect real-world usage scenarios rather than simple translations. Moreover, we also release an effective code sandbox execution tool (i.e., SandboxFusion) supporting various programming languages and packages to evaluate the performance of our FullStack Bench efficiently. Comprehensive experimental results on our FullStack Bench demonstrate the necessity and effectiveness of our FullStack Bench and SandboxFusion.
Abstract:Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
Abstract:Repository-level code completion has drawn great attention in software engineering, and several benchmark datasets have been introduced. However, existing repository-level code completion benchmarks usually focus on a limited number of languages (<5), which cannot evaluate the general code intelligence abilities across different languages for existing code Large Language Models (LLMs). Besides, the existing benchmarks usually report overall average scores of different languages, where the fine-grained abilities in different completion scenarios are ignored. Therefore, to facilitate the research of code LLMs in multilingual scenarios, we propose a massively multilingual repository-level code completion benchmark covering 18 programming languages (called M2RC-EVAL), and two types of fine-grained annotations (i.e., bucket-level and semantic-level) on different completion scenarios are provided, where we obtain these annotations based on the parsed abstract syntax tree. Moreover, we also curate a massively multilingual instruction corpora M2RC- INSTRUCT dataset to improve the repository-level code completion abilities of existing code LLMs. Comprehensive experimental results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.
Abstract:The integration of multimodal Electronic Health Records (EHR) data has significantly improved clinical predictive capabilities. Leveraging clinical notes and multivariate time-series EHR, existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge, particularly from the knowledge graph (KG). Previous approaches with KG knowledge have primarily focused on structured knowledge extraction, neglecting unstructured data modalities and semantic high dimensional medical knowledge. In response, we propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations that address these limitations. Firstly, we apply Large Language Model (LLM) to encode long context clinical notes and GRU model to encode time-series EHR data. Secondly, we prompt LLM to extract task-relevant medical entities and match entities in professionally labeled external knowledge graph (PrimeKG) with corresponding medical knowledge. By matching and aligning with clinical standards, our framework eliminates hallucinations and ensures consistency. Lastly, we propose an adaptive multimodal fusion network to integrate extracted knowledge with multimodal EHR data. Our extensive experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines, emphasizing the effectiveness of each module. REALM framework contributes to refining the use of multimodal EHR data in healthcare and bridging the gap with nuanced medical context essential for informed clinical predictions.
Abstract:Interactive reinforcement learning has shown promise in learning complex robotic tasks. However, the process can be human-intensive due to the requirement of large amount of interactive feedback. This paper presents a new method that uses scores provided by humans, instead of pairwise preferences, to improve the feedback efficiency of interactive reinforcement learning. Our key insight is that scores can yield significantly more data than pairwise preferences. Specifically, we require a teacher to interactively score the full trajectories of an agent to train a behavioral policy in a sparse reward environment. To avoid unstable scores given by human negatively impact the training process, we propose an adaptive learning scheme. This enables the learning paradigm to be insensitive to imperfect or unreliable scores. We extensively evaluate our method on robotic locomotion and manipulation tasks. The results show that the proposed method can efficiently learn near-optimal policies by adaptive learning from scores, while requiring less feedback compared to pairwise preference learning methods. The source codes are publicly available at https://github.com/SSKKai/Interactive-Scoring-IRL.
Abstract:Cross-domain recommendation (CDR) aims to provide better recommendation results in the target domain with the help of the source domain, which is widely used and explored in real-world systems. However, CDR in the matching (i.e., candidate generation) module struggles with the data sparsity and popularity bias issues in both representation learning and knowledge transfer. In this work, we propose a novel Contrastive Cross-Domain Recommendation (CCDR) framework for CDR in matching. Specifically, we build a huge diversified preference network to capture multiple information reflecting user diverse interests, and design an intra-domain contrastive learning (intra-CL) and three inter-domain contrastive learning (inter-CL) tasks for better representation learning and knowledge transfer. The intra-CL enables more effective and balanced training inside the target domain via a graph augmentation, while the inter-CL builds different types of cross-domain interactions from user, taxonomy, and neighbor aspects. In experiments, CCDR achieves significant improvements on both offline and online evaluations in a real-world system. Currently, we have deployed CCDR on a well-known recommendation system, affecting millions of users. The source code will be released in the future.
Abstract:Recently, real-world recommendation systems need to deal with millions of candidates. It is extremely challenging to conduct sophisticated end-to-end algorithms on the entire corpus due to the tremendous computation costs. Therefore, conventional recommendation systems usually contain two modules. The matching module focuses on the coverage, which aims to efficiently retrieve hundreds of items from large corpora, while the ranking module generates specific ranks for these items. Recommendation diversity is an essential factor that impacts user experience. Most efforts have explored recommendation diversity in ranking, while the matching module should take more responsibility for diversity. In this paper, we propose a novel Heterogeneous graph neural network framework for diversified recommendation (GraphDR) in matching to improve both recommendation accuracy and diversity. Specifically, GraphDR builds a huge heterogeneous preference network to record different types of user preferences, and conduct a field-level heterogeneous graph attention network for node aggregation. We also innovatively conduct a neighbor-similarity based loss to balance both recommendation accuracy and diversity for the diversified matching task. In experiments, we conduct extensive online and offline evaluations on a real-world recommendation system with various accuracy and diversity metrics and achieve significant improvements. We also conduct model analyses and case study for a better understanding of our model. Moreover, GraphDR has been deployed on a well-known recommendation system, which affects millions of users. The source code will be released.