Southern University of Science and Technology
Abstract:We present UniRef-Image-Edit, a high-performance multi-modal generation system that unifies single-image editing and multi-image composition within a single framework. Existing diffusion-based editing methods often struggle to maintain consistency across multiple conditions due to limited interaction between reference inputs. To address this, we introduce Sequence-Extended Latent Fusion (SELF), a unified input representation that dynamically serializes multiple reference images into a coherent latent sequence. During a dedicated training stage, all reference images are jointly constrained to fit within a fixed-length sequence under a global pixel-budget constraint. Building upon SELF, we propose a two-stage training framework comprising supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we jointly train on single-image editing and multi-image composition tasks to establish a robust generative prior. We adopt a progressive sequence length training strategy, in which all input images are initially resized to a total pixel budget of $1024^2$, and are then gradually increased to $1536^2$ and $2048^2$ to improve visual fidelity and cross-reference consistency. This gradual relaxation of compression enables the model to incrementally capture finer visual details while maintaining stable alignment across references. For the RL stage, we introduce Multi-Source GRPO (MSGRPO), to our knowledge the first reinforcement learning framework tailored for multi-reference image generation. MSGRPO optimizes the model to reconcile conflicting visual constraints, significantly enhancing compositional consistency. We will open-source the code, models, training data, and reward data for community research purposes.
Abstract:Subseasonal-to-seasonal (S2S) forecasts play an essential role in providing a decision-critical weeks-to-months planning window for climate resilience and sustainability, yet a growing bottleneck is the last-mile gap: translating scientific forecasts into trusted, actionable climate services, requiring reliable multimodal understanding and decision-facing reasoning under uncertainty. Meanwhile, multimodal large language models (MLLMs) and corresponding agentic paradigms have made rapid progress in supporting various workflows, but it remains unclear whether they can reliably generate decision-making deliverables from operational service products (e.g., actionable signal comprehension, decision-making handoff, and decision analysis & planning) under uncertainty. We introduce S2SServiceBench, a multimodal benchmark for last-mile S2S climate services curated from an operational climate-service system to evaluate this capability. S2SServiceBenchcovers 10 service products with about 150+ expert-selected cases in total, spanning six application domains - Agriculture, Disasters, Energy, Finance, Health, and Shipping. Each case is instantiated at three service levels, yielding around 500 tasks and 1,000+ evaluation items across climate resilience and sustainability applications. Using S2SServiceBench, we benchmark state-of-the-art MLLMs and agents, and analyze performance across products and service levels, revealing persistent challenges in S2S service plot understanding and reasoning - namely, actionable signal comprehension, operationalizing uncertainty into executable handoffs, and stable, evidence-grounded analysis and planning for dynamic hazards-while offering actionable guidance for building future climate-service agents.
Abstract:While generative recommendations (GR) possess strong sequential reasoning capabilities, they face significant challenges when processing extremely long user behavior sequences: the high computational cost forces practical sequence lengths to be limited, preventing models from capturing users' lifelong interests; meanwhile, the inherent "recency bias" of attention mechanisms further weakens learning from long-term history. To overcome this bottleneck, we propose GEMs (Generative rEcommendation with a Multi-stream decoder), a novel and unified framework designed to break the long-sequence barrier by capturing users' lifelong interaction sequences through a multi-stream perspective. Specifically, GEMs partitions user behaviors into three temporal streams$\unicode{x2014}$Recent, Mid-term, and Lifecycle$\unicode{x2014}$and employs tailored inference schemes for each: a one-stage real-time extractor for immediate dynamics, a lightweight indexer for cross attention to balance accuracy and cost for mid-term sequences, and a two-stage offline-online compression module for lifelong modeling. These streams are integrated via a parameter-free fusion strategy to enable holistic interest representation. Extensive experiments on large-scale industrial datasets demonstrate that GEMs significantly outperforms state-of-the-art methods in recommendation accuracy. Notably, GEMs is the first lifelong GR framework successfully deployed in a high-concurrency industrial environment, achieving superior inference efficiency while processing user sequences of over 100,000 interactions.
Abstract:Autoregressive large language models (LLMs) scale well by expressing diverse tasks as sequences of discrete natural-language tokens and training with next-token prediction, which unifies comprehension and generation under self-supervision. Extending this paradigm to multimodal data requires a shared, discrete representation across modalities. However, most vision-language models (VLMs) still rely on a hybrid interface: discrete text tokens paired with continuous Vision Transformer (ViT) features. Because supervision is largely text-driven, these models are often biased toward understanding and cannot fully leverage large-scale self-supervised learning on non-text data. Recent work has explored discrete visual tokenization to enable fully autoregressive multimodal modeling, showing promising progress toward unified understanding and generation. Yet existing discrete vision tokens frequently lose information due to limited code capacity, resulting in noticeably weaker understanding than continuous-feature VLMs. We present Kelix, a fully discrete autoregressive unified model that closes the understanding gap between discrete and continuous visual representations.
Abstract:While diffusion models have shown exceptional capabilities in aesthetic image synthesis, they often struggle with complex spatial understanding and reasoning. Existing approaches resort to Multimodal Large Language Models (MLLMs) to enhance this capability. However, they either incur high computational costs through joint training or suffer from spatial information loss when relying solely on textual prompts. To alleviate these limitations, we propose a Spatial Chain-of-Thought (SCoT) framework, a plug-and-play approach that effectively bridges the reasoning capabilities of MLLMs with the generative power of diffusion models. Specifically, we first enhance the diffusion model's layout awareness by training it on an interleaved text-coordinate instruction format. We then leverage state-of-the-art MLLMs as planners to generate comprehensive layout plans, transferring their spatial planning capabilities directly to the generation process. Extensive experiments demonstrate that our method achieves state-of-the-art performance on image generation benchmarks and significantly outperforms baselines on complex reasoning tasks, while also showing strong efficacy in image editing scenarios.
Abstract:Industrial recommender systems typically rely on multi-task learning to estimate diverse user feedback signals and aggregate them for ranking. Recent advances in model scaling have shown promising gains in recommendation. However, naively increasing model capacity imposes prohibitive online inference costs and often yields diminishing returns for sparse tasks with skewed label distributions. This mismatch between uniform parameter scaling and heterogeneous task capacity demands poses a fundamental challenge for scalable multi-task recommendation. In this work, we investigate parameter sparsification as a principled scaling paradigm and identify two critical obstacles when applying sparse Mixture-of-Experts (MoE) to multi-task recommendation: exploded expert activation that undermines instance-level sparsity and expert load skew caused by independent task-wise routing. To address these challenges, we propose SMES, a scalable sparse MoE framework with progressive expert routing. SMES decomposes expert activation into a task-shared expert subset jointly selected across tasks and task-adaptive private experts, explicitly bounding per-instance expert execution while preserving task-specific capacity. In addition, SMES introduces a global multi-gate load-balancing regularizer that stabilizes training by regulating aggregated expert utilization across all tasks. SMES has been deployed in Kuaishou large-scale short-video services, supporting over 400 million daily active users. Extensive online experiments demonstrate stable improvements, with GAUC gain of 0.29% and a 0.31% uplift in user watch time.
Abstract:Large-scale live-streaming recommendation requires precise modeling of non-stationary content semantics under strict real-time serving constraints. In industrial deployment, two common approaches exhibit fundamental limitations: discrete semantic abstractions sacrifice descriptive precision through clustering, while dense multimodal embeddings are extracted independently and remain weakly aligned with ranking optimization, limiting fine-grained content-aware ranking. To address these limitations, we propose \textbf{SARM}, an end-to-end ranking architecture that integrates natural-language semantic anchors directly into ranking optimization, enabling fine-grained author representations conditioned on multimodal content. Each semantic anchor is represented as learnable text tokens jointly optimized with ranking features, allowing the model to adapt content descriptions to ranking objectives. A lightweight dual-token gated design captures domain-specific live-streaming semantics, while an asymmetric deployment strategy preserves low-latency online training and serving. Extensive offline evaluation and large-scale A/B tests show consistent improvements over production baselines. SARM is fully deployed and serves over 400 million users daily.
Abstract:Stains are essential in histopathology to visualize specific tissue characteristics, with Haematoxylin and Eosin (H&E) serving as the clinical standard. However, pathologists frequently utilize a variety of special stains for the diagnosis of specific morphologies. Maintaining accurate metadata for these slides is critical for quality control in clinical archives and for the integrity of computational pathology datasets. In this work, we compare two approaches for automated classification of stains using whole slide images, covering the 14 most commonly used special stains in our institute alongside standard and frozen-section H&E. We evaluate a Multi-Instance Learning (MIL) pipeline and a proposed lightweight thumbnail-based approach. On internal test data, MIL achieved the highest performance (macro F1: 0.941 for 16 classes; 0.969 for 14 merged classes), while the thumbnail approach remained competitive (0.897 and 0.953, respectively). On external TCGA data, the thumbnail model generalized best (weighted F1: 0.843 vs. 0.807 for MIL). The thumbnail approach also increased throughput by two orders of magnitude (5.635 vs. 0.018 slides/s for MIL with all patches). We conclude that thumbnail-based classification provides a scalable and robust solution for routine visual quality control in digital pathology workflows.
Abstract:Live-streaming recommender system serves as critical infrastructure that bridges the patterns of real-time interactions between users and authors. Similar to traditional industrial recommender systems, live-streaming recommendation also relies on cascade architectures to support large-scale concurrency. Recent advances in generative recommendation unify the multi-stage recommendation process with Transformer-based architectures, offering improved scalability and higher computational efficiency. However, the inherent complexity of live-streaming prevents the direct transfer of these methods to live-streaming scenario, where continuously evolving content, limited lifecycles, strict real-time constraints, and heterogeneous multi-objectives introduce unique challenges that invalidate static tokenization and conventional model framework. To address these issues, we propose OneLive, a dynamically unified generative recommendation framework tailored for live-streaming scenario. OneLive integrates four key components: (i) A Dynamic Tokenizer that continuously encodes evolving real-time live content fused with behavior signal through residual quantization; (ii) A Time-Aware Gated Attention mechanism that explicitly models temporal dynamics for timely decision making; (iii) An efficient decoder-only generative architecture enhanced with Sequential MTP and QK Norm for stable training and accelerated inference; (iv) A Unified Multi-Objective Alignment Framework reinforces policy optimization for personalized preferences.
Abstract:The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.