Southern University of Science and Technology
Abstract:Handling lengthy context is crucial for enhancing the recognition and understanding capabilities of multimodal large language models (MLLMs) in applications such as processing high-resolution images or high frame rate videos. The rise in image resolution and frame rate substantially increases computational demands due to the increased number of input tokens. This challenge is further exacerbated by the quadratic complexity with respect to sequence length of the self-attention mechanism. Most prior works either pre-train models with long contexts, overlooking the efficiency problem, or attempt to reduce the context length via downsampling (e.g., identify the key image patches or frames) to decrease the context length, which may result in information loss. To circumvent this issue while keeping the remarkable effectiveness of MLLMs, we propose a novel approach using a hybrid transformer-MAMBA model to efficiently handle long contexts in multimodal applications. Our multimodal model can effectively process long context input exceeding 100k tokens, outperforming existing models across various benchmarks. Remarkably, our model enhances inference efficiency for high-resolution images and high-frame-rate videos by about 4 times compared to current models, with efficiency gains increasing as image resolution or video frames rise. Furthermore, our model is the first to be trained on low-resolution images or low-frame-rate videos while being capable of inference on high-resolution images and high-frame-rate videos, offering flexibility for inference in diverse scenarios.
Abstract:Industrial recommendation systems (RS) rely on the multi-stage pipeline to balance effectiveness and efficiency when delivering items from a vast corpus to users. Existing RS benchmark datasets primarily focus on the exposure space, where novel RS algorithms are trained and evaluated. However, when these algorithms transition to real world industrial RS, they face a critical challenge of handling unexposed items which are a significantly larger space than the exposed one. This discrepancy profoundly impacts their practical performance. Additionally, these algorithms often overlook the intricate interplay between multiple RS stages, resulting in suboptimal overall system performance. To address this issue, we introduce RecFlow, an industrial full flow recommendation dataset designed to bridge the gap between offline RS benchmarks and the real online environment. Unlike existing datasets, RecFlow includes samples not only from the exposure space but also unexposed items filtered at each stage of the RS funnel. Our dataset comprises 38M interactions from 42K users across nearly 9M items with additional 1.9B stage samples collected from 9.3M online requests over 37 days and spanning 6 stages. Leveraging the RecFlow dataset, we conduct courageous exploration experiments, showcasing its potential in designing new algorithms to enhance effectiveness by incorporating stage-specific samples. Some of these algorithms have already been deployed online, consistently yielding significant gains. We propose RecFlow as the first comprehensive benchmark dataset for the RS community, supporting research on designing algorithms at any stage, study of selection bias, debiased algorithms, multi-stage consistency and optimality, multi-task recommendation, and user behavior modeling. The RecFlow dataset, along with the corresponding source code, is available at https://github.com/RecFlow-ICLR/RecFlow.
Abstract:Clinical decision-making relies heavily on causal reasoning and longitudinal analysis. For example, for a patient with Alzheimer's disease (AD), how will the brain grey matter atrophy in a year if intervened on the A-beta level in cerebrospinal fluid? The answer is fundamental to diagnosis and follow-up treatment. However, this kind of inquiry involves counterfactual medical images which can not be acquired by instrumental or correlation-based image synthesis models. Yet, such queries require counterfactual medical images, not obtainable through standard image synthesis models. Hence, a causal longitudinal image synthesis (CLIS) method, enabling the synthesis of such images, is highly valuable. However, building a CLIS model confronts three primary yet unmet challenges: mismatched dimensionality between high-dimensional images and low-dimensional tabular variables, inconsistent collection intervals of follow-up data, and inadequate causal modeling capability of existing causal graph methods for image data. In this paper, we established a tabular-visual causal graph (TVCG) for CLIS overcoming these challenges through a novel integration of generative imaging, continuous-time modeling, and structural causal models combined with a neural network. We train our CLIS based on the ADNI dataset and evaluate it on two other AD datasets, which illustrate the outstanding yet controllable quality of the synthesized images and the contributions of synthesized MRI to the characterization of AD progression, substantiating the reliability and utility in clinics.
Abstract:With the rise of short video platforms, video recommendation technology faces more complex challenges. Currently, there are multiple non-personalized modules in the video recommendation pipeline that urgently need personalized modeling techniques for improvement. Inspired by the success of uplift modeling in online marketing, we attempt to implement uplift modeling in the video recommendation scenario. However, we face two main challenges: 1) Design and utilization of treatments, and 2) Capture of user real-time interest. To address them, we design adjusting the distribution of videos with varying durations as the treatment and propose Coarse-to-fine Dynamic Uplift Modeling (CDUM) for real-time video recommendation. CDUM consists of two modules, CPM and FIC. The former module fully utilizes the offline features of users to model their long-term preferences, while the latter module leverages online real-time contextual features and request-level candidates to model users' real-time interests. These two modules work together to dynamically identify and targeting specific user groups and applying treatments effectively. Further, we conduct comprehensive experiments on the offline public and industrial datasets and online A/B test, demonstrating the superiority and effectiveness of our proposed CDUM. Our proposed CDUM is eventually fully deployed on the Kuaishou platform, serving hundreds of millions of users every day. The source code will be provided after the paper is accepted.
Abstract:Bokeh rendering is one of the most popular techniques in photography. It can make photographs visually appealing, forcing users to focus their attentions on particular area of image. However, achieving satisfactory bokeh effect usually presents significant challenge, since mobile cameras with restricted optical systems are constrained, while expensive high-end DSLR lens with large aperture should be needed. Therefore, many deep learning-based computational photography methods have been developed to mimic the bokeh effect in recent years. Nevertheless, most of these methods were limited to rendering bokeh effect in certain single aperture. There lacks user-friendly bokeh rendering method that can provide precise focal plane control and customised bokeh generation. There as well lacks authentic realistic bokeh dataset that can potentially promote bokeh learning on variable apertures. To address these two issues, in this paper, we have proposed an effective controllable bokeh rendering method, and contributed a Variable Aperture Bokeh Dataset (VABD). In the proposed method, user can customize focal plane to accurately locate concerned subjects and select target aperture information for bokeh rendering. Experimental results on public EBB! benchmark dataset and our constructed dataset VABD have demonstrated that the customized focal plane together aperture prompt can bootstrap model to simulate realistic bokeh effect. The proposed method has achieved competitive state-of-the-art performance with only 4.4M parameters, which is much lighter than mainstream computational bokeh models. The contributed dataset and source codes will be released on github https://github.com/MoTong-AI-studio/VABM.
Abstract:Retrieval-Augmented Generation (RAG) models are designed to incorporate external knowledge, reducing hallucinations caused by insufficient parametric (internal) knowledge. However, even with accurate and relevant retrieved content, RAG models can still produce hallucinations by generating outputs that conflict with the retrieved information. Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge. Current detection methods often focus on one of these mechanisms or without decoupling their intertwined effects, making accurate detection difficult. In this paper, we investigate the internal mechanisms behind hallucinations in RAG scenarios. We discover hallucinations occur when the Knowledge FFNs in LLMs overemphasize parametric knowledge in the residual stream, while Copying Heads fail to effectively retain or integrate external knowledge from retrieved content. Based on these findings, we propose ReDeEP, a novel method that detects hallucinations by decoupling LLM's utilization of external context and parametric knowledge. Our experiments show that ReDeEP significantly improves RAG hallucination detection accuracy. Additionally, we introduce AARF, which mitigates hallucinations by modulating the contributions of Knowledge FFNs and Copying Heads.
Abstract:Recently, generative recommendation has emerged as a promising new paradigm that directly generates item identifiers for recommendation. However, a key challenge lies in how to effectively construct item identifiers that are suitable for recommender systems. Existing methods typically decouple item tokenization from subsequent generative recommendation training, likely resulting in suboptimal performance. To address this limitation, we propose ETEGRec, a novel End-To-End Generative Recommender by seamlessly integrating item tokenization and generative recommendation. Our framework is developed based on the dual encoder-decoder architecture, which consists of an item tokenizer and a generative recommender. In order to achieve mutual enhancement between the two components, we propose a recommendation-oriented alignment approach by devising two specific optimization objectives: sequence-item alignment and preference-semantic alignment. These two alignment objectives can effectively couple the learning of item tokenizer and generative recommender, thereby fostering the mutual enhancement between the two components. Finally, we further devise an alternating optimization method, to facilitate stable and effective end-to-end learning of the entire framework. Extensive experiments demonstrate the effectiveness of our proposed framework compared to a series of traditional sequential recommendation models and generative recommendation baselines.
Abstract:E-commerce is increasingly multimedia-enriched, with products exhibited in a broad-domain manner as images, short videos, or live stream promotions. A unified and vectorized cross-domain production representation is essential. Due to large intra-product variance and high inter-product similarity in the broad-domain scenario, a visual-only representation is inadequate. While Automatic Speech Recognition (ASR) text derived from the short or live-stream videos is readily accessible, how to de-noise the excessively noisy text for multimodal representation learning is mostly untouched. We propose ASR-enhanced Multimodal Product Representation Learning (AMPere). In order to extract product-specific information from the raw ASR text, AMPere uses an easy-to-implement LLM-based ASR text summarizer. The LLM-summarized text, together with visual data, is then fed into a multi-branch network to generate compact multimodal embeddings. Extensive experiments on a large-scale tri-domain dataset verify the effectiveness of AMPere in obtaining a unified multimodal product representation that clearly improves cross-domain product retrieval.
Abstract:With the rapid expansion of e-commerce, more consumers have become accustomed to making purchases via livestreaming. Accurately identifying the products being sold by salespeople, i.e., livestreaming product retrieval (LPR), poses a fundamental and daunting challenge. The LPR task encompasses three primary dilemmas in real-world scenarios: 1) the recognition of intended products from distractor products present in the background; 2) the video-image heterogeneity that the appearance of products showcased in live streams often deviates substantially from standardized product images in stores; 3) there are numerous confusing products with subtle visual nuances in the shop. To tackle these challenges, we propose the Spatiotemporal Graphing Multi-modal Network (SGMN). First, we employ a text-guided attention mechanism that leverages the spoken content of salespeople to guide the model to focus toward intended products, emphasizing their salience over cluttered background products. Second, a long-range spatiotemporal graph network is further designed to achieve both instance-level interaction and frame-level matching, solving the misalignment caused by video-image heterogeneity. Third, we propose a multi-modal hard example mining, assisting the model in distinguishing highly similar products with fine-grained features across the video-image-text domain. Through extensive quantitative and qualitative experiments, we demonstrate the superior performance of our proposed SGMN model, surpassing the state-of-the-art methods by a substantial margin. The code is available at https://github.com/Huxiaowan/SGMN.
Abstract:In recent years, graph contrastive learning (GCL) has received increasing attention in recommender systems due to its effectiveness in reducing bias caused by data sparsity. However, most existing GCL models rely on heuristic approaches and usually assume entity independence when constructing contrastive views. We argue that these methods struggle to strike a balance between semantic invariance and view hardness across the dynamic training process, both of which are critical factors in graph contrastive learning. To address the above issues, we propose a novel GCL-based recommendation framework RGCL, which effectively maintains the semantic invariance of contrastive pairs and dynamically adapts as the model capability evolves through the training process. Specifically, RGCL first introduces decision boundary-aware adversarial perturbations to constrain the exploration space of contrastive augmented views, avoiding the decrease of task-specific information. Furthermore, to incorporate global user-user and item-item collaboration relationships for guiding on the generation of hard contrastive views, we propose an adversarial-contrastive learning objective to construct a relation-aware view-generator. Besides, considering that unsupervised GCL could potentially narrower margins between data points and the decision boundary, resulting in decreased model robustness, we introduce the adversarial examples based on maximum perturbations to achieve margin maximization. We also provide theoretical analyses on the effectiveness of our designs. Through extensive experiments on five public datasets, we demonstrate the superiority of RGCL compared against twelve baseline models.