Abstract:The task of issue resolving is to modify a codebase to generate a patch that addresses a given issue. However, existing benchmarks, such as SWE-bench, focus almost exclusively on Python, making them insufficient for evaluating Large Language Models (LLMs) across diverse software ecosystems. To address this, we introduce a multilingual issue-resolving benchmark, called Multi-SWE-bench, covering Java, TypeScript, JavaScript, Go, Rust, C, and C++. It includes a total of 1,632 high-quality instances, which were carefully annotated from 2,456 candidates by 68 expert annotators, ensuring that the benchmark can provide an accurate and reliable evaluation. Based on Multi-SWE-bench, we evaluate a series of state-of-the-art models using three representative methods (Agentless, SWE-agent, and OpenHands) and present a comprehensive analysis with key empirical insights. In addition, we launch a Multi-SWE-RL open-source community, aimed at building large-scale reinforcement learning (RL) training datasets for issue-resolving tasks. As an initial contribution, we release a set of 4,723 well-structured instances spanning seven programming languages, laying a solid foundation for RL research in this domain. More importantly, we open-source our entire data production pipeline, along with detailed tutorials, encouraging the open-source community to continuously contribute and expand the dataset. We envision our Multi-SWE-bench and the ever-growing Multi-SWE-RL community as catalysts for advancing RL toward its full potential, bringing us one step closer to the dawn of AGI.
Abstract:As the capabilities of code large language models (LLMs) continue to expand, their applications across diverse code intelligence domains are rapidly increasing. However, most existing datasets only evaluate limited application domains. To address this gap, we have developed a comprehensive code evaluation dataset FullStack Bench focusing on full-stack programming, which encompasses a wide range of application domains (e.g., basic programming, data analysis, software engineering, mathematics, and machine learning). Besides, to assess multilingual programming capabilities, in FullStack Bench, we design real-world instructions and corresponding unit test cases from 16 widely-used programming languages to reflect real-world usage scenarios rather than simple translations. Moreover, we also release an effective code sandbox execution tool (i.e., SandboxFusion) supporting various programming languages and packages to evaluate the performance of our FullStack Bench efficiently. Comprehensive experimental results on our FullStack Bench demonstrate the necessity and effectiveness of our FullStack Bench and SandboxFusion.
Abstract:Since the fully convolutional network has achieved great success in semantic segmentation, lots of works have been proposed focusing on extracting discriminative pixel feature representations. However, we observe that existing methods still suffer from two typical challenges, i.e. (i) large intra-class feature variation in different scenes, (ii) small inter-class feature distinction in the same scene. In this paper, we first rethink semantic segmentation from a perspective of similarity between pixels and class centers. Each weight vector of the segmentation head represents its corresponding semantic class in the whole dataset, which can be regarded as the embedding of the class center. Thus, the pixel-wise classification amounts to computing similarity in the final feature space between pixels and the class centers. Under this novel view, we propose a Class Center Similarity layer (CCS layer) to address the above-mentioned challenges by generating adaptive class centers conditioned on different scenes and supervising the similarities between class centers. It utilizes a Adaptive Class Center Module (ACCM) to generate class centers conditioned on each scene, which adapt the large intra-class variation between different scenes. Specially designed loss functions are introduced to control both inter-class and intra-class distances based on predicted center-to-center and pixel-to-center similarity, respectively. Finally, the CCS layer outputs the processed pixel-to-center similarity as the segmentation prediction. Extensive experiments demonstrate that our model performs favourably against the state-of-the-art CNN-based methods.