Abstract:With the rapid development of blockchain technology, smart contract security has become a critical challenge. Existing smart contract vulnerability detection methods face three main issues: (1) Insufficient quality of datasets, lacking detailed explanations and precise vulnerability locations. (2) Limited adaptability of large language models (LLMs) to the smart contract domain, as most LLMs are pre-trained on general text data but minimal smart contract-specific data. (3) Lack of high-quality explanations for detected vulnerabilities, as existing methods focus solely on detection without clear explanations. These limitations hinder detection performance and make it harder for developers to understand and fix vulnerabilities quickly, potentially leading to severe financial losses. To address these problems, we propose Smart-LLaMA, an advanced detection method based on the LLaMA language model. First, we construct a comprehensive dataset covering four vulnerability types with labels, detailed explanations, and precise vulnerability locations. Second, we introduce Smart Contract-Specific Continual Pre-Training, using raw smart contract data to enable the LLM to learn smart contract syntax and semantics, enhancing their domain adaptability. Furthermore, we propose Explanation-Guided Fine-Tuning, which fine-tunes the LLM using paired vulnerable code and explanations, enabling both vulnerability detection and reasoned explanations. We evaluate explanation quality through LLM and human evaluation, focusing on Correctness, Completeness, and Conciseness. Experimental results show that Smart-LLaMA outperforms state-of-the-art baselines, with average improvements of 6.49% in F1 score and 3.78% in accuracy, while providing reliable explanations.
Abstract:In recommender systems, various latent confounding factors (e.g., user social environment and item public attractiveness) can affect user behavior, item exposure, and feedback in distinct ways. These factors may directly or indirectly impact user feedback and are often shared across items or users, making them multi-cause latent confounders. However, existing methods typically fail to account for latent confounders between users and their feedback, as well as those between items and user feedback simultaneously. To address the problem of multi-cause latent confounders, we propose a multi-cause deconfounding method for recommender systems with latent confounders (MCDCF). MCDCF leverages multi-cause causal effect estimation to learn substitutes for latent confounders associated with both users and items, using user behaviour data. Specifically, MCDCF treats the multiple items that users interact with and the multiple users that interact with items as treatment variables, enabling it to learn substitutes for the latent confounders that influence the estimation of causality between users and their feedback, as well as between items and user feedback. Additionally, we theoretically demonstrate the soundness of our MCDCF method. Extensive experiments on three real-world datasets demonstrate that our MCDCF method effectively recovers latent confounders related to users and items, reducing bias and thereby improving recommendation accuracy.
Abstract:GitHub issue resolving is a critical task in software engineering, recently gaining significant attention in both industry and academia. Within this task, SWE-bench has been released to evaluate issue resolving capabilities of large language models (LLMs), but has so far only focused on Python version. However, supporting more programming languages is also important, as there is a strong demand in industry. As a first step toward multilingual support, we have developed a Java version of SWE-bench, called SWE-bench-java. We have publicly released the dataset, along with the corresponding Docker-based evaluation environment and leaderboard, which will be continuously maintained and updated in the coming months. To verify the reliability of SWE-bench-java, we implement a classic method SWE-agent and test several powerful LLMs on it. As is well known, developing a high-quality multi-lingual benchmark is time-consuming and labor-intensive, so we welcome contributions through pull requests or collaboration to accelerate its iteration and refinement, paving the way for fully automated programming.
Abstract:In recommender systems, latent variables can cause user-item interaction data to deviate from true user preferences. This biased data is then used to train recommendation models, further amplifying the bias and ultimately compromising both recommendation accuracy and user satisfaction. Instrumental Variable (IV) methods are effective tools for addressing the confounding bias introduced by latent variables; however, identifying a valid IV is often challenging. To overcome this issue, we propose a novel data-driven conditional IV (CIV) debiasing method for recommender systems, called CIV4Rec. CIV4Rec automatically generates valid CIVs and their corresponding conditioning sets directly from interaction data, significantly reducing the complexity of IV selection while effectively mitigating the confounding bias caused by latent variables in recommender systems. Specifically, CIV4Rec leverages a variational autoencoder (VAE) to generate the representations of the CIV and its conditional set from interaction data, followed by the application of least squares to derive causal representations for click prediction. Extensive experiments on two real-world datasets, Movielens-10M and Douban-Movie, demonstrate that our CIV4Rec successfully identifies valid CIVs, effectively reduces bias, and consequently improves recommendation accuracy.
Abstract:In recommender systems, popularity and conformity biases undermine recommender effectiveness by disproportionately favouring popular items, leading to their over-representation in recommendation lists and causing an unbalanced distribution of user-item historical data. We construct a causal graph to address both biases and describe the abstract data generation mechanism. Then, we use it as a guide to develop a novel Debiased Contrastive Learning framework for Mitigating Dual Biases, called DCLMDB. In DCLMDB, both popularity bias and conformity bias are handled in the model training process by contrastive learning to ensure that user choices and recommended items are not unduly influenced by conformity and popularity. Extensive experiments on two real-world datasets, Movielens-10M and Netflix, show that DCLMDB can effectively reduce the dual biases, as well as significantly enhance the accuracy and diversity of recommendations.