additional authors not shown
Abstract:Image-based Virtual Try-On (VTON) concerns the synthesis of realistic person imagery through garment re-rendering under human pose and body constraints. In practice, however, existing approaches are typically optimized for specific data conditions, making their deployment reliant on retraining and limiting their generalization as a unified solution. We present OmniVTON++, a training-free VTON framework designed for universal applicability. It addresses the intertwined challenges of garment alignment, human structural coherence, and boundary continuity by coordinating Structured Garment Morphing for correspondence-driven garment adaptation, Principal Pose Guidance for step-wise structural regulation during diffusion sampling, and Continuous Boundary Stitching for boundary-aware refinement, forming a cohesive pipeline without task-specific retraining. Experimental results demonstrate that OmniVTON++ achieves state-of-the-art performance across diverse generalization settings, including cross-dataset and cross-garment-type evaluations, while reliably operating across scenarios and diffusion backbones within a single formulation. In addition to single-garment, single-human cases, the framework supports multi-garment, multi-human, and anime character virtual try-on, expanding the scope of virtual try-on applications. The source code will be released to the public.
Abstract:Integrating massive multiple-input multiple-output (mMIMO) systems with intelligent reflecting surfaces (IRS) presents a promising paradigm for enhancing physical-layer security (PLS) in wireless communications. However, deploying high-resolution quantizers in large-scale mMIMO arrays, along with numerous IRS elements, leads to substantial hardware complexity. To address these challenges, this paper proposes a cost-effective PLS design for IRS-assisted mMIMO systems by employing one-bit digital-to-analog converters (DACs). The focus is on jointly optimizing one-bit quantized precoding at the transmitter and constant-modulus phase shifts at the IRS to maximize the secrecy rate. This leads to a highly non-convex fractional secrecy rate maximization (SRM) problem. To efficiently solve this problem, two algorithms are proposed: (1) the WMMSE-PDD algorithm, which reformulates the SRM problem into a sequence of non-fractional programs with auxiliary variables using the weighted minimum mean-square error (WMMSE) method and solves them via the penalty dual decomposition (PDD) approach, achieving superior secrecy performance; and (2) the exact penalty product Riemannian gradient descent (EPPRGD) algorithm, which transforms the SRM problem into an unconstrained optimization over a product Riemannian manifold, eliminating auxiliary variables and enabling faster convergence with a slight trade-off in secrecy performance. Both algorithms provide analytical solutions at each iteration and are proven to converge to Karush-Kuhn-Tucker (KKT) points. Simulation results confirm the effectiveness of the proposed methods and highlight their respective advantages.
Abstract:Recent advances in video diffusion models have significantly improved visual quality, yet ultra-high-resolution (UHR) video generation remains a formidable challenge due to the compounded difficulties of motion modeling, semantic planning, and detail synthesis. To address these limitations, we propose \textbf{LUVE}, a \textbf{L}atent-cascaded \textbf{U}HR \textbf{V}ideo generation framework built upon dual frequency \textbf{E}xperts. LUVE employs a three-stage architecture comprising low-resolution motion generation for motion-consistent latent synthesis, video latent upsampling that performs resolution upsampling directly in the latent space to mitigate memory and computational overhead, and high-resolution content refinement that integrates low-frequency and high-frequency experts to jointly enhance semantic coherence and fine-grained detail generation. Extensive experiments demonstrate that our LUVE achieves superior photorealism and content fidelity in UHR video generation, and comprehensive ablation studies further validate the effectiveness of each component. The project is available at \href{https://unicornanrocinu.github.io/LUVE_web/}{https://github.io/LUVE/}.
Abstract:Large language models (LLMs) have achieved success, but cost and privacy constraints necessitate deploying smaller models locally while offloading complex queries to cloud-based models. Existing router evaluations are unsystematic, overlooking scenario-specific requirements and out-of-distribution robustness. We propose RouterXBench, a principled evaluation framework with three dimensions: router ability, scenario alignment, and cross-domain robustness. Unlike prior work that relies on output probabilities or external embeddings, we utilize internal hidden states that capture model uncertainty before answer generation. We introduce ProbeDirichlet, a lightweight router that aggregates cross-layer hidden states via learnable Dirichlet distributions with probabilistic training. Trained on multi-domain data, it generalizes robustly across in-domain and out-of-distribution scenarios. Our results show ProbeDirichlet achieves 16.68% and 18.86% relative improvements over the best baselines in router ability and high-accuracy scenarios, with consistent performance across model families, model scales, heterogeneous tasks, and agentic workflows.
Abstract:LLM-as-a-Judge has been widely adopted across various research and practical applications, yet the robustness and reliability of its evaluation remain a critical issue. A core challenge it faces is bias, which has primarily been studied in terms of known biases and their impact on evaluation outcomes, while automated and systematic exploration of potential unknown biases is still lacking. Nevertheless, such exploration is crucial for enhancing the robustness and reliability of evaluations. To bridge this gap, we propose BiasScope, a LLM-driven framework for automatically and at scale discovering potential biases that may arise during model evaluation. BiasScope can uncover potential biases across different model families and scales, with its generality and effectiveness validated on the JudgeBench dataset. It overcomes the limitations of existing approaches, transforming bias discovery from a passive process relying on manual effort and predefined bias lists into an active and comprehensive automated exploration. Moreover, based on BiasScope, we propose JudgeBench-Pro, an extended version of JudgeBench and a more challenging benchmark for evaluating the robustness of LLM-as-a-judge. Strikingly, even powerful LLMs as evaluators show error rates above 50\% on JudgeBench-Pro, underscoring the urgent need to strengthen evaluation robustness and to mitigate potential biases further.
Abstract:Latent or continuous chain-of-thought methods replace explicit textual rationales with a number of internal latent steps, but these intermediate computations are difficult to evaluate beyond correlation-based probes. In this paper, we view latent chain-of-thought as a manipulable causal process in representation space by modeling latent steps as variables in a structural causal model (SCM) and analyzing their effects through step-wise $\mathrm{do}$-interventions. We study two representative paradigms (i.e., Coconut and CODI) on both mathematical and general reasoning tasks to investigate three key questions: (1) which steps are causally necessary for correctness and when answers become decidable early; (2) how does influence propagate across steps, and how does this structure compare to explicit CoT; and (3) do intermediate trajectories retain competing answer modes, and how does output-level commitment differ from representational commitment across steps. We find that latent-step budgets behave less like homogeneous extra depth and more like staged functionality with non-local routing, and we identify a persistent gap between early output bias and late representational commitment. These results motivate mode-conditional and stability-aware analyses -- and corresponding training/decoding objectives -- as more reliable tools for interpreting and improving latent reasoning systems.
Abstract:Real-world autonomous planning requires coordinating tightly coupled constraints where a single decision dictates the feasibility of all subsequent actions. However, existing benchmarks predominantly feature loosely coupled constraints solvable through local greedy decisions and rely on idealized data, failing to capture the complexity of extracting parameters from dynamic web environments. We introduce \textbf{WorldTravel}, a benchmark comprising 150 real-world travel scenarios across 5 cities that demand navigating an average of 15+ interdependent temporal and logical constraints. To evaluate agents in realistic deployments, we develop \textbf{WorldTravel-Webscape}, a multi-modal environment featuring over 2,000 rendered webpages where agents must perceive constraint parameters directly from visual layouts to inform their planning. Our evaluation of 10 frontier models reveals a significant performance collapse: even the state-of-the-art GPT-5.2 achieves only 32.67\% feasibility in text-only settings, which plummets to 19.33\% in multi-modal environments. We identify a critical Perception-Action Gap and a Planning Horizon threshold at approximately 10 constraints where model reasoning consistently fails, suggesting that perception and reasoning remain independent bottlenecks. These findings underscore the need for next-generation agents that unify high-fidelity visual perception with long-horizon reasoning to handle brittle real-world logistics.
Abstract:Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
Abstract:Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
Abstract:Fairness in Federated Learning (FL) is emerging as a critical factor driven by heterogeneous clients' constraints and balanced model performance across various scenarios. In this survey, we delineate a comprehensive classification of the state-of-the-art fairness-aware approaches from a multifaceted perspective, i.e., model performance-oriented and capability-oriented. Moreover, we provide a framework to categorize and address various fairness concerns and associated technical aspects, examining their effectiveness in balancing equity and performance within FL frameworks. We further examine several significant evaluation metrics leveraged to measure fairness quantitatively. Finally, we explore exciting open research directions and propose prospective solutions that could drive future advancements in this important area, laying a solid foundation for researchers working toward fairness in FL.