Abstract:Recent advancements in generative AI have suggested that by taking visual prompt, GPT-4V can demonstrate significant proficiency in image recognition task. Despite its impressive capabilities, the financial cost associated with GPT-4V's inference presents a substantial barrier for its wide use. To address this challenge, our work introduces Collage Prompting, a budget-friendly prompting approach that concatenates multiple images into a single visual input. With collage prompt, GPT-4V is able to perform image recognition on several images simultaneously. Based on the observation that the accuracy of GPT-4V's image recognition varies significantly with the order of images within the collage prompt, our method further learns to optimize the arrangement of images for maximum recognition accuracy. A graph predictor is trained to indicate the accuracy of each collage prompt, then we propose an optimization method to navigate the search space of possible image arrangements. Experiment results across various datasets demonstrate the cost-efficiency score of collage prompt is much larger than standard prompt. Additionally, collage prompt with learned arrangement achieves clearly better accuracy than collage prompt with random arrangement in GPT-4V's visual recognition.
Abstract:To solve the coupling problem of control loops and the adaptive parameter tuning problem in the multi-input multi-output (MIMO) PID control system, a self-adaptive LSAC-PID algorithm is proposed based on deep reinforcement learning (RL) and Lyapunov-based reward shaping in this paper. For complex and unknown mobile robot control environment, an RL-based MIMO PID hybrid control strategy is firstly presented. According to the dynamic information and environmental feedback of the mobile robot, the RL agent can output the optimal MIMO PID parameters in real time, without knowing mathematical model and decoupling multiple control loops. Then, to improve the convergence speed of RL and the stability of mobile robots, a Lyapunov-based reward shaping soft actor-critic (LSAC) algorithm is proposed based on Lyapunov theory and potential-based reward shaping method. The convergence and optimality of the algorithm are proved in terms of the policy evaluation and improvement step of soft policy iteration. In addition, for line-following robots, the region growing method is improved to adapt to the influence of forks and environmental interference. Through comparison, test and cross-validation, the simulation and real-environment experimental results all show good performance of the proposed LSAC-PID tuning algorithm.
Abstract:Proportional-integral-derivative (PID) control is the most widely used in industrial control, robot control and other fields. However, traditional PID control is not competent when the system cannot be accurately modeled and the operating environment is variable in real time. To tackle these problems, we propose a self-adaptive model-free SAC-PID control approach based on reinforcement learning for automatic control of mobile robots. A new hierarchical structure is developed, which includes the upper controller based on soft actor-critic (SAC), one of the most competitive continuous control algorithms, and the lower controller based on incremental PID controller. Soft actor-critic receives the dynamic information of the mobile robot as input, and simultaneously outputs the optimal parameters of incremental PID controllers to compensate for the error between the path and the mobile robot in real time. In addition, the combination of 24-neighborhood method and polynomial fitting is developed to improve the adaptability of SAC-PID control method to complex environments. The effectiveness of the SAC-PID control method is verified with several different difficulty paths both on Gazebo and real mecanum mobile robot. Futhermore, compared with fuzzy PID control, the SAC-PID method has merits of strong robustness, generalization and real-time performance.
Abstract:This paper proposes a global approach for the multi-view registration of unordered range scans. As the basis of multi-view registration, pair-wise registration is very pivotal. Therefore, we first select a good descriptor and accelerate its correspondence propagation for the pair-wise registration. Then, we design an effective rule to judge the reliability of pair-wise registration results. Subsequently, we propose a model augmentation method, which can utilize reliable results of pair-wise registration to augment the model shape. Finally, multi-view registration can be accomplished by operating the pair-wise registration and judgment, and model augmentation alternately. Experimental results on public available data sets show, that this approach can automatically achieve the multi-view registration of unordered range scans with good accuracy and effectiveness.
Abstract:This paper proposes an effective approach for the scaling registration of $m$-D point sets. Different from the rigid transformation, the scaling registration can not be formulated into the common least square function due to the ill-posed problem caused by the scale factor. Therefore, this paper designs a novel objective function for the scaling registration problem. The appearance of this objective function is a rational fraction, where the numerator item is the least square error and the denominator item is the square of the scale factor. By imposing the emphasis on scale factor, the ill-posed problem can be avoided in the scaling registration. Subsequently, the new objective function can be solved by the proposed scaling iterative closest point (ICP) algorithm, which can obtain the optimal scaling transformation. For the practical applications, the scaling ICP algorithm is further extended to align partially overlapping point sets. Finally, the proposed approach is tested on public data sets and applied to merging grid maps of different resolutions. Experimental results demonstrate its superiority over previous approaches on efficiency and robustness.