Abstract:Multimodal image fusion and segmentation enhance scene understanding in autonomous driving by integrating data from various sensors. However, current models struggle to efficiently segment densely packed elements in such scenes, due to the absence of comprehensive fusion features that can guide mid-process fine-tuning and focus attention on relevant areas. The Segment Anything Model (SAM) has emerged as a transformative segmentation method. It provides more effective prompts through its flexible prompt encoder, compared to transformers lacking fine-tuned control. Nevertheless, SAM has not been extensively studied in the domain of multimodal fusion for natural images. In this paper, we introduce SAM into multimodal image segmentation for the first time, proposing a novel framework that combines Latent Space Token Generation (LSTG) and Fusion Mask Prompting (FMP) modules to enhance SAM's multimodal fusion and segmentation capabilities. Specifically, we first obtain latent space features of the two modalities through vector quantization and embed them into a cross-attention-based inter-domain fusion module to establish long-range dependencies between modalities. Then, we use these comprehensive fusion features as prompts to guide precise pixel-level segmentation. Extensive experiments on several public datasets demonstrate that the proposed method significantly outperforms SAM and SAM2 in multimodal autonomous driving scenarios, achieving at least 3.9$\%$ higher segmentation mIoU than the state-of-the-art approaches.
Abstract:Recent advancements in generative AI have suggested that by taking visual prompt, GPT-4V can demonstrate significant proficiency in image recognition task. Despite its impressive capabilities, the financial cost associated with GPT-4V's inference presents a substantial barrier for its wide use. To address this challenge, our work introduces Collage Prompting, a budget-friendly prompting approach that concatenates multiple images into a single visual input. With collage prompt, GPT-4V is able to perform image recognition on several images simultaneously. Based on the observation that the accuracy of GPT-4V's image recognition varies significantly with the order of images within the collage prompt, our method further learns to optimize the arrangement of images for maximum recognition accuracy. A graph predictor is trained to indicate the accuracy of each collage prompt, then we propose an optimization method to navigate the search space of possible image arrangements. Experiment results across various datasets demonstrate the cost-efficiency score of collage prompt is much larger than standard prompt. Additionally, collage prompt with learned arrangement achieves clearly better accuracy than collage prompt with random arrangement in GPT-4V's visual recognition.
Abstract:Adversarial Imitation Learning (AIL) allows the agent to reproduce expert behavior with low-dimensional states and actions. However, challenges arise in handling visual states due to their less distinguishable representation compared to low-dimensional proprioceptive features. While existing methods resort to adopt complex network architectures or separate the process of learning representation and decision-making, they overlook valuable intra-agent information within demonstrations. To address this problem, this paper proposes a simple and effective solution by incorporating calibrated contrastive representative learning into visual AIL framework. Specifically, we present an image encoder in visual AIL, utilizing a combination of unsupervised and supervised contrastive learning to extract valuable features from visual states. Based on the fact that the improved agent often produces demonstrations of varying quality, we propose to calibrate the contrastive loss by treating each agent demonstrations as a mixed sample. The incorporation of contrastive learning can be jointly optimized with the AIL framework, without modifying the architecture or incurring significant computational costs. Experimental results on DMControl Suite demonstrate our proposed method is sample efficient and can outperform other compared methods from different aspects.
Abstract:Unsupervised anomaly detection has gained significant attention in the field of medical imaging due to its capability of relieving the costly pixel-level annotation. To achieve this, modern approaches usually utilize generative models to produce healthy references of the diseased images and then identify the abnormalities by comparing the healthy references and the original diseased images. Recently, diffusion models have exhibited promising potential for unsupervised anomaly detection in medical images for their good mode coverage and high sample quality. However, the intrinsic characteristics of the medical images, e.g. the low contrast, and the intricate anatomical structure of the human body make the reconstruction challenging. Besides, the global information of medical images often remain underutilized. To address these two issues, we propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images. The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions. Extensive experiments on data of tumors and multiple sclerosis lesions demonstrate the effectiveness of our method.
Abstract:Imitation learning has emerged as a promising approach for addressing sequential decision-making problems, with the assumption that expert demonstrations are optimal. However, in real-world scenarios, expert demonstrations are often imperfect, leading to challenges in effectively applying imitation learning. While existing research has focused on optimizing with imperfect demonstrations, the training typically requires a certain proportion of optimal demonstrations to guarantee performance. To tackle these problems, we propose to purify the potential perturbations in imperfect demonstrations and subsequently conduct imitation learning from purified demonstrations. Motivated by the success of diffusion models, we introduce a two-step purification via the diffusion process. In the first step, we apply a forward diffusion process to effectively smooth out the potential perturbations in imperfect demonstrations by introducing additional noise. Subsequently, a reverse generative process is utilized to recover the optimal expert demonstrations from the diffused ones. We provide theoretical evidence supporting our approach, demonstrating that total variance distance between the purified and optimal demonstration distributions can be upper-bounded. The evaluation results on MuJoCo demonstrate the effectiveness of our method from different aspects.
Abstract:Adversarial imitation learning has become a widely used imitation learning framework. The discriminator is often trained by taking expert demonstrations and policy trajectories as examples respectively from two categories (positive vs. negative) and the policy is then expected to produce trajectories that are indistinguishable from the expert demonstrations. But in the real world, the collected expert demonstrations are more likely to be imperfect, where only an unknown fraction of the demonstrations are optimal. Instead of treating imperfect expert demonstrations as absolutely positive or negative, we investigate unlabeled imperfect expert demonstrations as they are. A positive-unlabeled adversarial imitation learning algorithm is developed to dynamically sample expert demonstrations that can well match the trajectories from the constantly optimized agent policy. The trajectories of an initial agent policy could be closer to those non-optimal expert demonstrations, but within the framework of adversarial imitation learning, agent policy will be optimized to cheat the discriminator and produce trajectories that are similar to those optimal expert demonstrations. Theoretical analysis shows that our method learns from the imperfect demonstrations via a self-paced way. Experimental results on MuJoCo and RoboSuite platforms demonstrate the effectiveness of our method from different aspects.
Abstract:Recently, Vision Transformer (ViT) has achieved promising performance in image recognition and gradually serves as a powerful backbone in various vision tasks. To satisfy the sequential input of Transformer, the tail of ViT first splits each image into a sequence of visual tokens with a fixed length. Then the following self-attention layers constructs the global relationship between tokens to produce useful representation for the downstream tasks. Empirically, representing the image with more tokens leads to better performance, yet the quadratic computational complexity of self-attention layer to the number of tokens could seriously influence the efficiency of ViT's inference. For computational reduction, a few pruning methods progressively prune uninformative tokens in the Transformer encoder, while leaving the number of tokens before the Transformer untouched. In fact, fewer tokens as the input for the Transformer encoder can directly reduce the following computational cost. In this spirit, we propose a Multi-Tailed Vision Transformer (MT-ViT) in the paper. MT-ViT adopts multiple tails to produce visual sequences of different lengths for the following Transformer encoder. A tail predictor is introduced to decide which tail is the most efficient for the image to produce accurate prediction. Both modules are optimized in an end-to-end fashion, with the Gumbel-Softmax trick. Experiments on ImageNet-1K demonstrate that MT-ViT can achieve a significant reduction on FLOPs with no degradation of the accuracy and outperform other compared methods in both accuracy and FLOPs.