Abstract:Variational Autoencoder (VAE) aims to compress pixel data into low-dimensional latent space, playing an important role in OpenAI's Sora and other latent video diffusion generation models. While most of existing video VAEs inflate a pretrained image VAE into the 3D causal structure for temporal-spatial compression, this paper presents two astonishing findings: (1) The initialization from a well-trained image VAE with the same latent dimensions suppresses the improvement of subsequent temporal compression capabilities. (2) The adoption of causal reasoning leads to unequal information interactions and unbalanced performance between frames. To alleviate these problems, we propose a keyframe-based temporal compression (KTC) architecture and a group causal convolution (GCConv) module to further improve video VAE (IV-VAE). Specifically, the KTC architecture divides the latent space into two branches, in which one half completely inherits the compression prior of keyframes from a lower-dimension image VAE while the other half involves temporal compression through 3D group causal convolution, reducing temporal-spatial conflicts and accelerating the convergence speed of video VAE. The GCConv in above 3D half uses standard convolution within each frame group to ensure inter-frame equivalence, and employs causal logical padding between groups to maintain flexibility in processing variable frame video. Extensive experiments on five benchmarks demonstrate the SOTA video reconstruction and generation capabilities of the proposed IV-VAE (https://wpy1999.github.io/IV-VAE/).
Abstract:This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
Abstract:Video virtual try-on aims to transfer a clothing item onto the video of a target person. Directly applying the technique of image-based try-on to the video domain in a frame-wise manner will cause temporal-inconsistent outcomes while previous video-based try-on solutions can only generate low visual quality and blurring results. In this work, we present ViViD, a novel framework employing powerful diffusion models to tackle the task of video virtual try-on. Specifically, we design the Garment Encoder to extract fine-grained clothing semantic features, guiding the model to capture garment details and inject them into the target video through the proposed attention feature fusion mechanism. To ensure spatial-temporal consistency, we introduce a lightweight Pose Encoder to encode pose signals, enabling the model to learn the interactions between clothing and human posture and insert hierarchical Temporal Modules into the text-to-image stable diffusion model for more coherent and lifelike video synthesis. Furthermore, we collect a new dataset, which is the largest, with the most diverse types of garments and the highest resolution for the task of video virtual try-on to date. Extensive experiments demonstrate that our approach is able to yield satisfactory video try-on results. The dataset, codes, and weights will be publicly available. Project page: https://becauseimbatman0.github.io/ViViD.
Abstract:3D Gaussians have recently emerged as an efficient representation for novel view synthesis. This work studies its editability with a particular focus on the inpainting task, which aims to supplement an incomplete set of 3D Gaussians with additional points for visually harmonious rendering. Compared to 2D inpainting, the crux of inpainting 3D Gaussians is to figure out the rendering-relevant properties of the introduced points, whose optimization largely benefits from their initial 3D positions. To this end, we propose to guide the point initialization with an image-conditioned depth completion model, which learns to directly restore the depth map based on the observed image. Such a design allows our model to fill in depth values at an aligned scale with the original depth, and also to harness strong generalizability from largescale diffusion prior. Thanks to the more accurate depth completion, our approach, dubbed InFusion, surpasses existing alternatives with sufficiently better fidelity and efficiency under various complex scenarios. We further demonstrate the effectiveness of InFusion with several practical applications, such as inpainting with user-specific texture or with novel object insertion.
Abstract:Recent methods utilize graph contrastive Learning within graph-structured user-item interaction data for collaborative filtering and have demonstrated their efficacy in recommendation tasks. However, they ignore that the difference relation density of nodes between the user- and item-side causes the adaptability of graphs on bilateral nodes to be different after multi-hop graph interaction calculation, which limits existing models to achieve ideal results. To solve this issue, we propose a novel framework for recommendation tasks called Bilateral Unsymmetrical Graph Contrastive Learning (BusGCL) that consider the bilateral unsymmetry on user-item node relation density for sliced user and item graph reasoning better with bilateral slicing contrastive training. Especially, taking into account the aggregation ability of hypergraph-based graph convolutional network (GCN) in digging implicit similarities is more suitable for user nodes, embeddings generated from three different modules: hypergraph-based GCN, GCN and perturbed GCN, are sliced into two subviews by the user- and item-side respectively, and selectively combined into subview pairs bilaterally based on the characteristics of inter-node relation structure. Furthermore, to align the distribution of user and item embeddings after aggregation, a dispersing loss is leveraged to adjust the mutual distance between all embeddings for maintaining learning ability. Comprehensive experiments on two public datasets have proved the superiority of BusGCL in comparison to various recommendation methods. Other models can simply utilize our bilateral slicing contrastive learning to enhance recommending performance without incurring extra expenses.
Abstract:Ego-to-exo video generation refers to generating the corresponding exocentric video according to the egocentric video, providing valuable applications in AR/VR and embodied AI. Benefiting from advancements in diffusion model techniques, notable progress has been achieved in video generation. However, existing methods build upon the spatiotemporal consistency assumptions between adjacent frames, which cannot be satisfied in the ego-to-exo scenarios due to drastic changes in views. To this end, this paper proposes an Intention-Driven Ego-to-exo video generation framework (IDE) that leverages action intention consisting of human movement and action description as view-independent representation to guide video generation, preserving the consistency of content and motion. Specifically, the egocentric head trajectory is first estimated through multi-view stereo matching. Then, cross-view feature perception module is introduced to establish correspondences between exo- and ego- views, guiding the trajectory transformation module to infer human full-body movement from the head trajectory. Meanwhile, we present an action description unit that maps the action semantics into the feature space consistent with the exocentric image. Finally, the inferred human movement and high-level action descriptions jointly guide the generation of exocentric motion and interaction content (i.e., corresponding optical flow and occlusion maps) in the backward process of the diffusion model, ultimately warping them into the corresponding exocentric video. We conduct extensive experiments on the relevant dataset with diverse exo-ego video pairs, and our IDE outperforms state-of-the-art models in both subjective and objective assessments, demonstrating its efficacy in ego-to-exo video generation.
Abstract:Consistency Models (CMs) have showed a promise in creating visual content efficiently and with high quality. However, the way to add new conditional controls to the pretrained CMs has not been explored. In this technical report, we consider alternative strategies for adding ControlNet-like conditional control to CMs and present three significant findings. 1) ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but struggles with low-level detail and realism control. 2) CMs serve as an independent class of generative models, based on which ControlNet can be trained from scratch using Consistency Training proposed by Song et al. 3) A lightweight adapter can be jointly optimized under multiple conditions through Consistency Training, allowing for the swift transfer of DMs-based ControlNet to CMs. We study these three solutions across various conditional controls, including edge, depth, human pose, low-resolution image and masked image with text-to-image latent consistency models.
Abstract:Full-spectrum out-of-distribution (F-OOD) detection aims to accurately recognize in-distribution (ID) samples while encountering semantic and covariate shifts simultaneously. However, existing out-of-distribution (OOD) detectors tend to overfit the covariance information and ignore intrinsic semantic correlation, inadequate for adapting to complex domain transformations. To address this issue, we propose a Likelihood-Aware Semantic Alignment (LSA) framework to promote the image-text correspondence into semantically high-likelihood regions. LSA consists of an offline Gaussian sampling strategy which efficiently samples semantic-relevant visual embeddings from the class-conditional Gaussian distribution, and a bidirectional prompt customization mechanism that adjusts both ID-related and negative context for discriminative ID/OOD boundary. Extensive experiments demonstrate the remarkable OOD detection performance of our proposed LSA especially on the intractable Near-OOD setting, surpassing existing methods by a margin of $15.26\%$ and $18.88\%$ on two F-OOD benchmarks, respectively.
Abstract:Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels. Recently, a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve pixel-level localization. While existing FPM-based methods use cross-entropy to evaluate the foreground prediction map and to guide the learning of the generator, this paper presents two astonishing experimental observations on the object localization learning process: For a trained network, as the foreground mask expands, 1) the cross-entropy converges to zero when the foreground mask covers only part of the object region. 2) The activation value continuously increases until the foreground mask expands to the object boundary. Therefore, to achieve a more effective localization performance, we argue for the usage of activation value to learn more object regions. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint (AMC) module is designed to facilitate the learning of generator by suppressing the background activation value. Meanwhile, by using foreground region guidance and area constraint, BAS can learn the whole region of the object. In the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets. In addition, our method also achieves state-of-the-art weakly supervised semantic segmentation performance on the PASCAL VOC 2012 and MS COCO 2014 datasets. Code and models are available at https://github.com/wpy1999/BAS-Extension.
Abstract:Prompt tuning and adapter tuning have shown great potential in transferring pre-trained vision-language models (VLMs) to various downstream tasks. In this work, we design a new type of tuning method, termed as regularized mask tuning, which masks the network parameters through a learnable selection. Inspired by neural pathways, we argue that the knowledge required by a downstream task already exists in the pre-trained weights but just gets concealed in the upstream pre-training stage. To bring the useful knowledge back into light, we first identify a set of parameters that are important to a given downstream task, then attach a binary mask to each parameter, and finally optimize these masks on the downstream data with the parameters frozen. When updating the mask, we introduce a novel gradient dropout strategy to regularize the parameter selection, in order to prevent the model from forgetting old knowledge and overfitting the downstream data. Experimental results on 11 datasets demonstrate the consistent superiority of our method over previous alternatives. It is noteworthy that we manage to deliver 18.73% performance improvement compared to the zero-shot CLIP via masking an average of only 2.56% parameters. Furthermore, our method is synergistic with most existing parameter-efficient tuning methods and can boost the performance on top of them. Project page can be found here (https://wuw2019.github.io/R-AMT/).