Abstract:Curvilinear structure segmentation (CSS) is vital in various domains, including medical imaging, landscape analysis, industrial surface inspection, and plant analysis. While existing methods achieve high performance within specific domains, their generalizability is limited. On the other hand, large-scale models such as Segment Anything Model (SAM) exhibit strong generalization but are not optimized for curvilinear structures. Existing adaptations of SAM primarily focus on general object segmentation and lack specialized design for CSS tasks. To bridge this gap, we propose the Universal Curvilinear structure Segmentation (\textit{UCS}) model, which adapts SAM to CSS tasks while enhancing its generalization. \textit{UCS} features a novel encoder architecture integrating a pretrained SAM encoder with two innovations: a Sparse Adapter, strategically inserted to inherit the pre-trained SAM encoder's generalization capability while minimizing the number of fine-tuning parameters, and a Prompt Generation module, which leverages Fast Fourier Transform with a high-pass filter to generate curve-specific prompts. Furthermore, the \textit{UCS} incorporates a mask decoder that eliminates reliance on manual interaction through a dual-compression module: a Hierarchical Feature Compression module, which aggregates the outputs of the sampled encoder to enhance detail preservation, and a Guidance Feature Compression module, which extracts and compresses image-driven guidance features. Evaluated on a comprehensive multi-domain dataset, including an in-house dataset covering eight natural curvilinear structures, \textit{UCS} demonstrates state-of-the-art generalization and open-set segmentation performance across medical, engineering, natural, and plant imagery, establishing a new benchmark for universal CSS.
Abstract:Photoplethysmography (PPG) Sensors, widely deployed in smartwatches, offer a simple and non-invasive authentication approach for daily use. However, PPG authentication faces reliability issues due to motion artifacts from physical activity and physiological variability over time. To address these challenges, we propose MTL-RAPID, an efficient and reliable PPG authentication model, that employs a multitask joint training strategy, simultaneously assessing signal quality and verifying user identity. The joint optimization of these two tasks in MTL-RAPID results in a structure that outperforms models trained on individual tasks separately, achieving stronger performance with fewer parameters. In our comprehensive user studies regarding motion artifacts (N = 30), time variations (N = 32), and user preferences (N = 16), MTL-RAPID achieves a best AUC of 99.2\% and an EER of 3.5\%, outperforming existing baselines. We opensource our PPG authentication dataset along with the MTL-RAPID model to facilitate future research on GitHub.
Abstract:This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
Abstract:Video colorization aims to transform grayscale videos into vivid color representations while maintaining temporal consistency and structural integrity. Existing video colorization methods often suffer from color bleeding and lack comprehensive control, particularly under complex motion or diverse semantic cues. To this end, we introduce VanGogh, a unified multimodal diffusion-based framework for video colorization. VanGogh tackles these challenges using a Dual Qformer to align and fuse features from multiple modalities, complemented by a depth-guided generation process and an optical flow loss, which help reduce color overflow. Additionally, a color injection strategy and luma channel replacement are implemented to improve generalization and mitigate flickering artifacts. Thanks to this design, users can exercise both global and local control over the generation process, resulting in higher-quality colorized videos. Extensive qualitative and quantitative evaluations, and user studies, demonstrate that VanGogh achieves superior temporal consistency and color fidelity.Project page: https://becauseimbatman0.github.io/VanGogh.
Abstract:Derived from diffusion models, MangaNinjia specializes in the task of reference-guided line art colorization. We incorporate two thoughtful designs to ensure precise character detail transcription, including a patch shuffling module to facilitate correspondence learning between the reference color image and the target line art, and a point-driven control scheme to enable fine-grained color matching. Experiments on a self-collected benchmark demonstrate the superiority of our model over current solutions in terms of precise colorization. We further showcase the potential of the proposed interactive point control in handling challenging cases, cross-character colorization, multi-reference harmonization, beyond the reach of existing algorithms.
Abstract:Missing values remain a common challenge for depth data across its wide range of applications, stemming from various causes like incomplete data acquisition and perspective alteration. This work bridges this gap with DepthLab, a foundation depth inpainting model powered by image diffusion priors. Our model features two notable strengths: (1) it demonstrates resilience to depth-deficient regions, providing reliable completion for both continuous areas and isolated points, and (2) it faithfully preserves scale consistency with the conditioned known depth when filling in missing values. Drawing on these advantages, our approach proves its worth in various downstream tasks, including 3D scene inpainting, text-to-3D scene generation, sparse-view reconstruction with DUST3R, and LiDAR depth completion, exceeding current solutions in both numerical performance and visual quality. Our project page with source code is available at https://johanan528.github.io/depthlab_web/.
Abstract:Variational Autoencoder (VAE) aims to compress pixel data into low-dimensional latent space, playing an important role in OpenAI's Sora and other latent video diffusion generation models. While most of existing video VAEs inflate a pretrained image VAE into the 3D causal structure for temporal-spatial compression, this paper presents two astonishing findings: (1) The initialization from a well-trained image VAE with the same latent dimensions suppresses the improvement of subsequent temporal compression capabilities. (2) The adoption of causal reasoning leads to unequal information interactions and unbalanced performance between frames. To alleviate these problems, we propose a keyframe-based temporal compression (KTC) architecture and a group causal convolution (GCConv) module to further improve video VAE (IV-VAE). Specifically, the KTC architecture divides the latent space into two branches, in which one half completely inherits the compression prior of keyframes from a lower-dimension image VAE while the other half involves temporal compression through 3D group causal convolution, reducing temporal-spatial conflicts and accelerating the convergence speed of video VAE. The GCConv in above 3D half uses standard convolution within each frame group to ensure inter-frame equivalence, and employs causal logical padding between groups to maintain flexibility in processing variable frame video. Extensive experiments on five benchmarks demonstrate the SOTA video reconstruction and generation capabilities of the proposed IV-VAE (https://wpy1999.github.io/IV-VAE/).
Abstract:This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
Abstract:Video virtual try-on aims to transfer a clothing item onto the video of a target person. Directly applying the technique of image-based try-on to the video domain in a frame-wise manner will cause temporal-inconsistent outcomes while previous video-based try-on solutions can only generate low visual quality and blurring results. In this work, we present ViViD, a novel framework employing powerful diffusion models to tackle the task of video virtual try-on. Specifically, we design the Garment Encoder to extract fine-grained clothing semantic features, guiding the model to capture garment details and inject them into the target video through the proposed attention feature fusion mechanism. To ensure spatial-temporal consistency, we introduce a lightweight Pose Encoder to encode pose signals, enabling the model to learn the interactions between clothing and human posture and insert hierarchical Temporal Modules into the text-to-image stable diffusion model for more coherent and lifelike video synthesis. Furthermore, we collect a new dataset, which is the largest, with the most diverse types of garments and the highest resolution for the task of video virtual try-on to date. Extensive experiments demonstrate that our approach is able to yield satisfactory video try-on results. The dataset, codes, and weights will be publicly available. Project page: https://becauseimbatman0.github.io/ViViD.
Abstract:3D Gaussians have recently emerged as an efficient representation for novel view synthesis. This work studies its editability with a particular focus on the inpainting task, which aims to supplement an incomplete set of 3D Gaussians with additional points for visually harmonious rendering. Compared to 2D inpainting, the crux of inpainting 3D Gaussians is to figure out the rendering-relevant properties of the introduced points, whose optimization largely benefits from their initial 3D positions. To this end, we propose to guide the point initialization with an image-conditioned depth completion model, which learns to directly restore the depth map based on the observed image. Such a design allows our model to fill in depth values at an aligned scale with the original depth, and also to harness strong generalizability from largescale diffusion prior. Thanks to the more accurate depth completion, our approach, dubbed InFusion, surpasses existing alternatives with sufficiently better fidelity and efficiency under various complex scenarios. We further demonstrate the effectiveness of InFusion with several practical applications, such as inpainting with user-specific texture or with novel object insertion.