Abstract:A control system structure for the underwater docking procedure of an Autonomous Underwater Helicopter (AUH) is proposed in this paper, which utilizes acoustic-inertial-optical guidance. Unlike conventional Autonomous Underwater Vehicles (AUVs), the maneuverability requirements for AUHs are more stringent during the docking procedure, requiring it to remain stationary or have minimal horizontal movement while moving vertically. The docking procedure is divided into two stages: Homing and Landing, each stage utilizing different guidance methods. Additionally, a segmented aligning strategy operating at various altitudes and a linear velocity decision are both adopted in Landing stage. Due to the unique structure of the Subsea Docking System (SDS), the AUH is required to dock onto the SDS in a fixed orientation with specific attitude and altitude. Therefore, a particular criterion is proposed to determine whether the AUH has successfully docked onto the SDS. Furthermore, the effectiveness and robustness of the proposed control method in AUH's docking procedure are demonstrated through pool experiments and sea trials.
Abstract:Restricted Boltzmann Machines (RBMs) are widely used probabilistic undirected graphical models with visible and latent nodes, playing an important role in statistics and machine learning. The task of structure learning for RBMs involves inferring the underlying graph by using samples from the visible nodes. Specifically, learning the two-hop neighbors of each visible node allows for the inference of the graph structure. Prior research has addressed the structure learning problem for specific classes of RBMs, namely ferromagnetic and locally consistent RBMs. In this paper, we extend the scope to the quantum computing domain and propose corresponding quantum algorithms for this problem. Our study demonstrates that the proposed quantum algorithms yield a polynomial speedup compared to the classical algorithms for learning the structure of these two classes of RBMs.
Abstract:The complete learning of an $n$-qubit quantum state requires samples exponentially in $n$. Several works consider subclasses of quantum states that can be learned in polynomial sample complexity such as stabilizer states or high-temperature Gibbs states. Other works consider a weaker sense of learning, such as PAC learning and shadow tomography. In this work, we consider learning states that are close to neural network quantum states, which can efficiently be represented by a graphical model called restricted Boltzmann machines (RBMs). To this end, we exhibit robustness results for efficient provable two-hop neighborhood learning algorithms for ferromagnetic and locally consistent RBMs. We consider the $L_p$-norm as a measure of closeness, including both total variation distance and max-norm distance in the limit. Our results allow certain quantum states to be learned with a sample complexity \textit{exponentially} better than naive tomography. We hence provide new classes of efficiently learnable quantum states and apply new strategies to learn them.
Abstract:Video moment retrieval pursues an efficient and generalized solution to identify the specific temporal segments within an untrimmed video that correspond to a given language description. To achieve this goal, we provide a generative diffusion-based framework called MomentDiff, which simulates a typical human retrieval process from random browsing to gradual localization. Specifically, we first diffuse the real span to random noise, and learn to denoise the random noise to the original span with the guidance of similarity between text and video. This allows the model to learn a mapping from arbitrary random locations to real moments, enabling the ability to locate segments from random initialization. Once trained, MomentDiff could sample random temporal segments as initial guesses and iteratively refine them to generate an accurate temporal boundary. Different from discriminative works (e.g., based on learnable proposals or queries), MomentDiff with random initialized spans could resist the temporal location biases from datasets. To evaluate the influence of the temporal location biases, we propose two anti-bias datasets with location distribution shifts, named Charades-STA-Len and Charades-STA-Mom. The experimental results demonstrate that our efficient framework consistently outperforms state-of-the-art methods on three public benchmarks, and exhibits better generalization and robustness on the proposed anti-bias datasets. The code, model, and anti-bias evaluation datasets are available at https://github.com/IMCCretrieval/MomentDiff.
Abstract:In many real-world datasets, like WebVision, the performance of DNN based classifier is often limited by the noisy labeled data. To tackle this problem, some image related side information, such as captions and tags, often reveal underlying relationships across images. In this paper, we present an efficient weakly supervised learning by using a Side Information Network (SINet), which aims to effectively carry out a large scale classification with severely noisy labels. The proposed SINet consists of a visual prototype module and a noise weighting module. The visual prototype module is designed to generate a compact representation for each category by introducing the side information. The noise weighting module aims to estimate the correctness of each noisy image and produce a confidence score for image ranking during the training procedure. The propsed SINet can largely alleviate the negative impact of noisy image labels, and is beneficial to train a high performance CNN based classifier. Besides, we released a fine-grained product dataset called AliProducts, which contains more than 2.5 million noisy web images crawled from the internet by using queries generated from 50,000 fine-grained semantic classes. Extensive experiments on several popular benchmarks (i.e. Webvision, ImageNet and Clothing-1M) and our proposed AliProducts achieve state-of-the-art performance. The SINet has won the first place in the classification task on WebVision Challenge 2019, and outperformed other competitors by a large margin.
Abstract:In this work, we propose the first quantum Ans\"atze for the statistical relational learning on knowledge graphs using parametric quantum circuits. We introduce two types of variational quantum circuits for knowledge graph embedding. Inspired by the classical representation learning, we first consider latent features for entities as coefficients of quantum states, while predicates are characterized by parametric gates acting on the quantum states. For the first model, the quantum advantages disappear when it comes to the optimization of this model. Therefore, we introduce a second quantum circuit model where embeddings of entities are generated from parameterized quantum gates acting on the pure quantum state. The benefit of the second method is that the quantum embeddings can be trained efficiently meanwhile preserving the quantum advantages. We show the proposed methods can achieve comparable results to the state-of-the-art classical models, e.g., RESCAL, DistMult. Furthermore, after optimizing the models, the complexity of inductive inference on the knowledge graphs might be reduced with respect to the number of entities.
Abstract:In this paper, we address the problem of person re-identification, which refers to associating the persons captured from different cameras. We propose a simple yet effective human part-aligned representation for handling the body part misalignment problem. Our approach decomposes the human body into regions (parts) which are discriminative for person matching, accordingly computes the representations over the regions, and aggregates the similarities computed between the corresponding regions of a pair of probe and gallery images as the overall matching score. Our formulation, inspired by attention models, is a deep neural network modeling the three steps together, which is learnt through minimizing the triplet loss function without requiring body part labeling information. Unlike most existing deep learning algorithms that learn a global or spatial partition-based local representation, our approach performs human body partition, and thus is more robust to pose changes and various human spatial distributions in the person bounding box. Our approach shows state-of-the-art results over standard datasets, Market-$1501$, CUHK$03$, CUHK$01$ and VIPeR.
Abstract:A deep residual network, built by stacking a sequence of residual blocks, is easy to train, because identity mappings skip residual branches and thus improve information flow. To further reduce the training difficulty, we present a simple network architecture, deep merge-and-run neural networks. The novelty lies in a modularized building block, merge-and-run block, which assembles residual branches in parallel through a merge-and-run mapping: Average the inputs of these residual branches (Merge), and add the average to the output of each residual branch as the input of the subsequent residual branch (Run), respectively. We show that the merge-and-run mapping is a linear idempotent function in which the transformation matrix is idempotent, and thus improves information flow, making training easy. In comparison to residual networks, our networks enjoy compelling advantages: they contain much shorter paths, and the width, i.e., the number of channels, is increased. We evaluate the performance on the standard recognition tasks. Our approach demonstrates consistent improvements over ResNets with the comparable setup, and achieves competitive results (e.g., $3.57\%$ testing error on CIFAR-$10$, $19.00\%$ on CIFAR-$100$, $1.51\%$ on SVHN).
Abstract:A key problem in salient object detection is how to effectively model the semantic properties of salient objects in a data-driven manner. In this paper, we propose a multi-task deep saliency model based on a fully convolutional neural network (FCNN) with global input (whole raw images) and global output (whole saliency maps). In principle, the proposed saliency model takes a data-driven strategy for encoding the underlying saliency prior information, and then sets up a multi-task learning scheme for exploring the intrinsic correlations between saliency detection and semantic image segmentation. Through collaborative feature learning from such two correlated tasks, the shared fully convolutional layers produce effective features for object perception. Moreover, it is capable of capturing the semantic information on salient objects across different levels using the fully convolutional layers, which investigate the feature-sharing properties of salient object detection with great feature redundancy reduction. Finally, we present a graph Laplacian regularized nonlinear regression model for saliency refinement. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.
Abstract:As an important and challenging problem in computer vision and graphics, keypoint-based object tracking is typically formulated in a spatio-temporal statistical learning framework. However, most existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency within frames, and discriminative feature construction. To address this issue, we propose a robust keypoint tracker based on spatio-temporal multi-task structured output optimization driven by discriminative metric learning. Consequently, temporal model coherence is characterized by multi-task structured keypoint model learning over several adjacent frames, while spatial model consistency is modeled by solving a geometric verification based structured learning problem. Discriminative feature construction is enabled by metric learning to ensure the intra-class compactness and inter-class separability. Finally, the above three modules are simultaneously optimized in a joint learning scheme. Experimental results have demonstrated the effectiveness of our tracker.