Abstract:Spatial contexts, such as the backgrounds and surroundings, are considered critical in Human-Object Interaction (HOI) recognition, especially when the instance-centric foreground is blurred or occluded. Recent advancements in HOI detectors are usually built upon detection transformer pipelines. While such an object-detection-oriented paradigm shows promise in localizing objects, its exploration of spatial context is often insufficient for accurately recognizing human actions. To enhance the capabilities of object detectors for HOI detection, we present a dual-branch framework named ContextHOI, which efficiently captures both object detection features and spatial contexts. In the context branch, we train the model to extract informative spatial context without requiring additional hand-craft background labels. Furthermore, we introduce context-aware spatial and semantic supervision to the context branch to filter out irrelevant noise and capture informative contexts. ContextHOI achieves state-of-the-art performance on the HICO-DET and v-coco benchmarks. For further validation, we construct a novel benchmark, HICO-ambiguous, which is a subset of HICO-DET that contains images with occluded or impaired instance cues. Extensive experiments across all benchmarks, complemented by visualizations, underscore the enhancements provided by ContextHOI, especially in recognizing interactions involving occluded or blurred instances.
Abstract:Human-object interaction (HOI) detectors with popular query-transformer architecture have achieved promising performance. However, accurately identifying uncommon visual patterns and distinguishing between ambiguous HOIs continue to be difficult for them. We observe that these difficulties may arise from the limited capacity of traditional detector queries in representing diverse intra-category patterns and inter-category dependencies. To address this, we introduce the Interaction Prompt Distribution Learning (InterProDa) approach. InterProDa learns multiple sets of soft prompts and estimates category distributions from various prompts. It then incorporates HOI queries with category distributions, making them capable of representing near-infinite intra-category dynamics and universal cross-category relationships. Our InterProDa detector demonstrates competitive performance on HICO-DET and vcoco benchmarks. Additionally, our method can be integrated into most transformer-based HOI detectors, significantly enhancing their performance with minimal additional parameters.