Abstract:Video photoplethysmography (vPPG) is an emerging method for non-invasive and convenient measurement of physiological signals, utilizing two primary approaches: remote video PPG (rPPG) and contact video PPG (cPPG). Monitoring vitals in high-altitude environments, where heart rates tend to increase and blood oxygen levels often decrease, presents significant challenges. To address these issues, we introduce the SUMS dataset comprising 80 synchronized non-contact facial and contact finger videos from 10 subjects during exercise and oxygen recovery scenarios, capturing PPG, respiration rate (RR), and SpO2. This dataset is designed to validate video vitals estimation algorithms and compare facial rPPG with finger cPPG. Additionally, fusing videos from different positions (i.e., face and finger) reduces the mean absolute error (MAE) of SpO2 predictions by 7.6\% and 10.6\% compared to only face and only finger, respectively. In cross-subject evaluation, we achieve an MAE of less than 0.5 BPM for HR estimation and 2.5\% for SpO2 estimation, demonstrating the precision of our multi-camera fusion techniques. Our findings suggest that simultaneous training on multiple indicators, such as PPG and blood oxygen, can reduce MAE in SpO2 estimation by 17.8\%.
Abstract:The data scarcity problem is a crucial factor that hampers the model performance of IMU-based human motion capture. However, effective data augmentation for IMU-based motion capture is challenging, since it has to capture the physical relations and constraints of the human body, while maintaining the data distribution and quality. We propose PoseAugment, a novel pipeline incorporating VAE-based pose generation and physical optimization. Given a pose sequence, the VAE module generates infinite poses with both high fidelity and diversity, while keeping the data distribution. The physical module optimizes poses to satisfy physical constraints with minimal motion restrictions. High-quality IMU data are then synthesized from the augmented poses for training motion capture models. Experiments show that PoseAugment outperforms previous data augmentation and pose generation methods in terms of motion capture accuracy, revealing a strong potential of our method to alleviate the data collection burden for IMU-based motion capture and related tasks driven by human poses.
Abstract:Modern information querying systems are progressively incorporating multimodal inputs like vision and audio. However, the integration of gaze -- a modality deeply linked to user intent and increasingly accessible via gaze-tracking wearables -- remains underexplored. This paper introduces a novel gaze-facilitated information querying paradigm, named G-VOILA, which synergizes users' gaze, visual field, and voice-based natural language queries to facilitate a more intuitive querying process. In a user-enactment study involving 21 participants in 3 daily scenarios (p = 21, scene = 3), we revealed the ambiguity in users' query language and a gaze-voice coordination pattern in users' natural query behaviors with G-VOILA. Based on the quantitative and qualitative findings, we developed a design framework for the G-VOILA paradigm, which effectively integrates the gaze data with the in-situ querying context. Then we implemented a G-VOILA proof-of-concept using cutting-edge deep learning techniques. A follow-up user study (p = 16, scene = 2) demonstrates its effectiveness by achieving both higher objective score and subjective score, compared to a baseline without gaze data. We further conducted interviews and provided insights for future gaze-facilitated information querying systems.
Abstract:Despite a rich history of investigating smartphone overuse intervention techniques, AI-based just-in-time adaptive intervention (JITAI) methods for overuse reduction are lacking. We develop Time2Stop, an intelligent, adaptive, and explainable JITAI system that leverages machine learning to identify optimal intervention timings, introduces interventions with transparent AI explanations, and collects user feedback to establish a human-AI loop and adapt the intervention model over time. We conducted an 8-week field experiment (N=71) to evaluate the effectiveness of both the adaptation and explanation aspects of Time2Stop. Our results indicate that our adaptive models significantly outperform the baseline methods on intervention accuracy (>32.8\% relatively) and receptivity (>8.0\%). In addition, incorporating explanations further enhances the effectiveness by 53.8\% and 11.4\% on accuracy and receptivity, respectively. Moreover, Time2Stop significantly reduces overuse, decreasing app visit frequency by 7.0$\sim$8.9\%. Our subjective data also echoed these quantitative measures. Participants preferred the adaptive interventions and rated the system highly on intervention time accuracy, effectiveness, and level of trust. We envision our work can inspire future research on JITAI systems with a human-AI loop to evolve with users.
Abstract:Problematic smartphone use negatively affects physical and mental health. Despite the wide range of prior research, existing persuasive techniques are not flexible enough to provide dynamic persuasion content based on users' physical contexts and mental states. We first conduct a Wizard-of-Oz study (N=12) and an interview study (N=10) to summarize the mental states behind problematic smartphone use: boredom, stress, and inertia. This informs our design of four persuasion strategies: understanding, comforting, evoking, and scaffolding habits. We leverage large language models (LLMs) to enable the automatic and dynamic generation of effective persuasion content. We develop MindShift, a novel LLM-powered problematic smartphone use intervention technique. MindShift takes users' in-the-moment physical contexts, mental states, app usage behaviors, users' goals & habits as input, and generates high-quality and flexible persuasive content with appropriate persuasion strategies. We conduct a 5-week field experiment (N=25) to compare MindShift with baseline techniques. The results show that MindShift significantly improves intervention acceptance rates by 17.8-22.5% and reduces smartphone use frequency by 12.1-14.4%. Moreover, users have a significant drop in smartphone addiction scale scores and a rise in self-efficacy. Our study sheds light on the potential of leveraging LLMs for context-aware persuasion in other behavior change domains.
Abstract:A computer vision system using low-resolution image sensors can provide intelligent services (e.g., activity recognition) but preserve unnecessary visual privacy information from the hardware level. However, preserving visual privacy and enabling accurate machine recognition have adversarial needs on image resolution. Modeling the trade-off of privacy preservation and machine recognition performance can guide future privacy-preserving computer vision systems using low-resolution image sensors. In this paper, using the at-home activity of daily livings (ADLs) as the scenario, we first obtained the most important visual privacy features through a user survey. Then we quantified and analyzed the effects of image resolution on human and machine recognition performance in activity recognition and privacy awareness tasks. We also investigated how modern image super-resolution techniques influence these effects. Based on the results, we proposed a method for modeling the trade-off of privacy preservation and activity recognition on low-resolution images.
Abstract:Cough monitoring can enable new individual pulmonary health applications. Subject cough event detection is the foundation for continuous cough monitoring. Recently, the rapid growth in smart hearables has opened new opportunities for such needs. This paper proposes EarCough, which enables continuous subject cough event detection on edge computing hearables by leveraging the always-on active noise cancellation (ANC) microphones. Specifically, we proposed a lightweight end-to-end neural network model -- EarCoughNet. To evaluate the effectiveness of our method, we constructed a synchronous motion and audio dataset through a user study. Results show that EarCough achieved an accuracy of 95.4% and an F1-score of 92.9% with a space requirement of only 385 kB. We envision EarCough as a low-cost add-on for future hearables to enable continuous subject cough event detection.
Abstract:Automatic unknown word detection techniques can enable new applications for assisting English as a Second Language (ESL) learners, thus improving their reading experiences. However, most modern unknown word detection methods require dedicated eye-tracking devices with high precision that are not easily accessible to end-users. In this work, we propose GazeReader, an unknown word detection method only using a webcam. GazeReader tracks the learner's gaze and then applies a transformer-based machine learning model that encodes the text information to locate the unknown word. We applied knowledge enhancement including term frequency, part of speech, and named entity recognition to improve the performance. The user study indicates that the accuracy and F1-score of our method were 98.09% and 75.73%, respectively. Lastly, we explored the design scope for ESL reading and discussed the findings.
Abstract:Remote photoplethysmography (rPPG) is an attractive method for noninvasive, convenient and concomitant measurement of physiological vital signals. Public benchmark datasets have served a valuable role in the development of this technology and improvements in accuracy over recent years.However, there remain gaps the public datasets.First, despite the ubiquity of cameras on mobile devices, there are few datasets recorded specifically with mobile phones cameras. Second, most datasets are relatively small and therefore are limited in diversity, both in appearance (e.g., skin tone), behaviors (e.g., motion) and enivornment (e.g., lighting conditions). In an effort to help the field advance, we present the Multi-domain Mobile Video Physiology Dataset (MMPD), comprising 11 hours of recordings from mobile phones of 33 subjects. The dataset was designed to capture videos with greater representation across skin tone, body motion, and lighting conditions. MMPD is comprehensive with eight descriptive labels and can be used in conjunction with the rPPG-toolbox. The Github repository of our dataset: {https://github.com/McJackTang/MMPD_rPPG_dataset}
Abstract:Multimodal sensors (e.g., visual, non-visual, and wearable) provide complementary information to develop robust perception systems for recognizing activities. However, most existing algorithms use dense sampling and heterogeneous sub-network to extract unimodal features and fuse them at the end of their framework, which causes data redundancy, lack of complementary multimodal information and high computational cost. In this paper, we propose a new novel multimodal neural architecture based on RGB and IMU wearable sensors (e.g., accelerometer, gyroscope) for human activity recognition called Multimodal Temporal Segment Attention Network (MMTSA). MMTSA first employs a multimodal data isomorphism mechanism based on Gramian Angular Field (GAF) and then applies a novel multimodal sparse sampling method to reduce redundancy. Moreover, we propose an inter-segment attention module in MMTSA to fuse multimodal features effectively and efficiently. We demonstrate the importance of imu data imaging and attention mechanism in human activity recognition by rigorous evaluation on three public datasets, and achieve superior improvements ($11.13\%$ on the MMAct dataset) than the previous state-of-the-art methods. The code is available at: https://github.com/THU-CS-PI/MMTSA.