Abstract:Long-tailed semi-supervised learning poses a significant challenge in training models with limited labeled data exhibiting a long-tailed label distribution. Current state-of-the-art LTSSL approaches heavily rely on high-quality pseudo-labels for large-scale unlabeled data. However, these methods often neglect the impact of representations learned by the neural network and struggle with real-world unlabeled data, which typically follows a different distribution than labeled data. This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning. Our framework derives the class-balanced contrastive loss through Gaussian kernel density estimation. We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels. By progressively estimating the underlying label distribution and optimizing its alignment with model predictions, we tackle the diverse distribution of unlabeled data in real-world scenarios. Extensive experiments across multiple datasets with varying unlabeled data distributions demonstrate that CCL consistently outperforms prior state-of-the-art methods, achieving over 4% improvement on the ImageNet-127 dataset. Our source code is available at https://github.com/zhouzihao11/CCL
Abstract:Recent research on fine-tuning vision-language models has demonstrated impressive performance in various downstream tasks. However, the challenge of obtaining accurately labeled data in real-world applications poses a significant obstacle during the fine-tuning process. To address this challenge, this paper presents a Denoising Fine-Tuning framework, called DeFT, for adapting vision-language models. DeFT utilizes the robust alignment of textual and visual features pre-trained on millions of auxiliary image-text pairs to sieve out noisy labels. The proposed framework establishes a noisy label detector by learning positive and negative textual prompts for each class. The positive prompt seeks to reveal distinctive features of the class, while the negative prompt serves as a learnable threshold for separating clean and noisy samples. We employ parameter-efficient fine-tuning for the adaptation of a pre-trained visual encoder to promote its alignment with the learned textual prompts. As a general framework, DeFT can seamlessly fine-tune many pre-trained models to downstream tasks by utilizing carefully selected clean samples. Experimental results on seven synthetic and real-world noisy datasets validate the effectiveness of DeFT in both noisy label detection and image classification.
Abstract:We propose a novel visual place recognition approach, VOP, that efficiently addresses occlusions and complex scenes by shifting from traditional reliance on global image similarities and local features to image overlap prediction. The proposed method enables the identification of visible image sections without requiring expensive feature detection and matching. By focusing on obtaining patch-level embeddings by a Vision Transformer backbone and establishing patch-to-patch correspondences, our approach uses a voting mechanism to assess overlap scores for potential database images, thereby providing a nuanced image retrieval metric in challenging scenarios. VOP leads to more accurate relative pose estimation and localization results on the retrieved image pairs than state-of-the-art baselines on a number of large-scale, real-world datasets. The code is available at https://github.com/weitong8591/vop.
Abstract:While long-tailed semi-supervised learning (LTSSL) has received tremendous attention in many real-world classification problems, existing LTSSL algorithms typically assume that the class distributions of labeled and unlabeled data are almost identical. Those LTSSL algorithms built upon the assumption can severely suffer when the class distributions of labeled and unlabeled data are mismatched since they utilize biased pseudo-labels from the model. To alleviate this problem, we propose a new simple method that can effectively utilize unlabeled data from unknown class distributions through Boosting cOnsistency in duAl Training (BOAT). Specifically, we construct the standard and balanced branch to ensure the performance of the head and tail classes, respectively. Throughout the training process, the two branches incrementally converge and interact with each other, eventually resulting in commendable performance across all classes. Despite its simplicity, we show that BOAT achieves state-of-the-art performance on a variety of standard LTSSL benchmarks, e.g., an averaged 2.7% absolute increase in test accuracy against existing algorithms when the class distributions of labeled and unlabeled data are mismatched. Even when the class distributions are identical, BOAT consistently outperforms many sophisticated LTSSL algorithms. We carry out extensive ablation studies to tease apart the factors that are the most important to the success of BOAT. The source code is available at https://github.com/Gank0078/BOAT.
Abstract:Pre-trained vision-language models like CLIP have shown powerful zero-shot inference ability via image-text matching and prove to be strong few-shot learners in various downstream tasks. However, in real-world scenarios, adapting CLIP to downstream tasks may encounter the following challenges: 1) data may exhibit long-tailed data distributions and might not have abundant samples for all the classes; 2) There might be emerging tasks with new classes that contain no samples at all. To overcome them, we propose a novel framework to achieve efficient and long-tailed generalization, which can be termed as Candle. During the training process, we propose compensating logit-adjusted loss to encourage large margins of prototypes and alleviate imbalance both within the base classes and between the base and new classes. For efficient adaptation, we treat the CLIP model as a black box and leverage the extracted features to obtain visual and textual prototypes for prediction. To make full use of multi-modal information, we also propose cross-modal attention to enrich the features from both modalities. For effective generalization, we introduce virtual prototypes for new classes to make up for their lack of training images. Candle achieves state-of-the-art performance over extensive experiments on 11 diverse datasets while substantially reducing the training time, demonstrating the superiority of our approach. The source code is available at https://github.com/shijxcs/Candle.
Abstract:Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in the emergence of numerous method variations. However, practitioners often encounter challenges when attempting to deploy these methods due to their subpar performance. In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models. We identify the aggregated biases and cognitive deviation problems inherent in foundation models, and propose a simple yet effective solution by imposing balanced margin softmax and decoupled label smoothing. Through extensive experiments, we demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms. The source code is available at https://github.com/Gank0078/FineSSL.
Abstract:In aerospace and energy engineering, accurate 3D combustion field temperature measurement is critical. The resolution of traditional methods based on algebraic iteration is limited by the initial voxel division. This study introduces a novel method for reconstructing three-dimensional temperature fields using the Spatial Radiation Representation Network (SRRN). This method utilizes the flame thermal radiation characteristics and differentiable rendering in graphics, and combines it with a multi-layer perceptron to achieve a functional representation of the flame temperature field. The effectiveness of SRRN is evaluated through simulated temperature field reconstruction experiments with different levels of complexity. The maximum root mean square error is 10.17, which proves the robustness of the algorithm to Gaussian noise and salt-and-pepper noise. We conducted a butane flame temperature field reconstruction experiment, and the maximum relative error between the reconstruction result and the thermocouple measurement value was 4.86%, confirming that the algorithm can achieve accurate reconstruction.
Abstract:We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting the spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2})$, respectively. These lower bounds suggest that our algorithms are nearly optimal in terms of $T$, $n$, and $\rho$.
Abstract:Despite recent advancements in out-of-distribution (OOD) detection, most current studies assume a class-balanced in-distribution training dataset, which is rarely the case in real-world scenarios. This paper addresses the challenging task of long-tailed OOD detection, where the in-distribution data follows a long-tailed class distribution. The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes, as the ability of a classifier to detect OOD instances is not strongly correlated with its accuracy on the in-distribution classes. To overcome this issue, we propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes. This approach allows us to build a detector with clear decision boundaries by training on OOD data using virtual labels. (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data. This technique encourages the model to pay more attention to the discriminative features of the tail classes. We provide a clue for separating in-distribution and OOD data by analyzing gradient noise. Through extensive experiments, we demonstrate that our method outperforms the current state-of-the-art on various benchmark datasets. Moreover, our method can be used as an add-on for existing long-tail learning approaches, significantly enhancing their OOD detection performance. Code is available at: https://github.com/Stomach-ache/Long-Tailed-OOD-Detection .
Abstract:Long-tail learning has received significant attention in recent years due to the challenge it poses with extremely imbalanced datasets. In these datasets, only a few classes (known as the head classes) have an adequate number of training samples, while the rest of the classes (known as the tail classes) are infrequent in the training data. Re-sampling is a classical and widely used approach for addressing class imbalance issues. Unfortunately, recent studies claim that re-sampling brings negligible performance improvements in modern long-tail learning tasks. This paper aims to investigate this phenomenon systematically. Our research shows that re-sampling can considerably improve generalization when the training images do not contain semantically irrelevant contexts. In other scenarios, however, it can learn unexpected spurious correlations between irrelevant contexts and target labels. We design experiments on two homogeneous datasets, one containing irrelevant context and the other not, to confirm our findings. To prevent the learning of spurious correlations, we propose a new context shift augmentation module that generates diverse training images for the tail class by maintaining a context bank extracted from the head-class images. Experiments demonstrate that our proposed module can boost the generalization and outperform other approaches, including class-balanced re-sampling, decoupled classifier re-training, and data augmentation methods. The source code is available at https://www.lamda.nju.edu.cn/code_CSA.ashx.