Abstract:From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction. This single-image calibration can benefit various downstream applications like image editing and 3D mapping. Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end. The learned approaches are more robust but struggle to generalize to new environments and are less accurate than their classical counterparts. We hypothesize that they lack the constraints that 3D geometry provides. In this work, we introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process. GeoCalib is trained end-to-end to estimate camera parameters and learns to find useful visual cues from the data. Experiments on various benchmarks show that GeoCalib is more robust and more accurate than existing classical and learned approaches. Its internal optimization estimates uncertainties, which help flag failure cases and benefit downstream applications like visual localization. The code and trained models are publicly available at https://github.com/cvg/GeoCalib.
Abstract:We propose a novel visual place recognition approach, VOP, that efficiently addresses occlusions and complex scenes by shifting from traditional reliance on global image similarities and local features to image overlap prediction. The proposed method enables the identification of visible image sections without requiring expensive feature detection and matching. By focusing on obtaining patch-level embeddings by a Vision Transformer backbone and establishing patch-to-patch correspondences, our approach uses a voting mechanism to assess overlap scores for potential database images, thereby providing a nuanced image retrieval metric in challenging scenarios. VOP leads to more accurate relative pose estimation and localization results on the retrieved image pairs than state-of-the-art baselines on a number of large-scale, real-world datasets. The code is available at https://github.com/weitong8591/vop.
Abstract:We introduce LightGlue, a deep neural network that learns to match local features across images. We revisit multiple design decisions of SuperGlue, the state of the art in sparse matching, and derive simple but effective improvements. Cumulatively, they make LightGlue more efficient - in terms of both memory and computation, more accurate, and much easier to train. One key property is that LightGlue is adaptive to the difficulty of the problem: the inference is much faster on image pairs that are intuitively easy to match, for example because of a larger visual overlap or limited appearance change. This opens up exciting prospects for deploying deep matchers in latency-sensitive applications like 3D reconstruction. The code and trained models are publicly available at https://github.com/cvg/LightGlue.
Abstract:Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this paper, we refine two key steps of structure-from-motion by a direct alignment of low-level image information from multiple views: we first adjust the initial keypoint locations prior to any geometric estimation, and subsequently refine points and camera poses as a post-processing. This refinement is robust to large detection noise and appearance changes, as it optimizes a featuremetric error based on dense features predicted by a neural network. This significantly improves the accuracy of camera poses and scene geometry for a wide range of keypoint detectors, challenging viewing conditions, and off-the-shelf deep features. Our system easily scales to large image collections, enabling pixel-perfect crowd-sourced localization at scale. Our code is publicly available at https://github.com/cvg/pixel-perfect-sfm as an add-on to the popular SfM software COLMAP.
Abstract:We propose GraphMineSuite (GMS): the first benchmarking suite for graph mining that facilitates evaluating and constructing high-performance graph mining algorithms. First, GMS comes with a benchmark specification based on extensive literature review, prescribing representative problems, algorithms, and datasets. Second, GMS offers a carefully designed software platform for seamless testing of different fine-grained elements of graph mining algorithms, such as graph representations or algorithm subroutines. The platform includes parallel implementations of more than 40 considered baselines, and it facilitates developing complex and fast mining algorithms. High modularity is possible by harnessing set algebra operations such as set intersection and difference, which enables breaking complex graph mining algorithms into simple building blocks that can be separately experimented with. GMS is supported with a broad concurrency analysis for portability in performance insights, and a novel performance metric to assess the throughput of graph mining algorithms, enabling more insightful evaluation. As use cases, we harness GMS to rapidly redesign and accelerate state-of-the-art baselines of core graph mining problems: degeneracy reordering (by up to >2x), maximal clique listing (by up to >9x), k-clique listing (by 1.1x), and subgraph isomorphism (by up to 2.5x), also obtaining better theoretical performance bounds.