Abstract:Abductive learning (ABL) that integrates strengths of machine learning and logical reasoning to improve the learning generalization, has been recently shown effective. However, its efficiency is affected by the transition between numerical induction and symbolical deduction, leading to high computational costs in the worst-case scenario. Efforts on this issue remain to be limited. In this paper, we identified three reasons why previous optimization algorithms for ABL were not effective: insufficient utilization of prediction, symbol relationships, and accumulated experience in successful abductive processes, resulting in redundant calculations to the knowledge base. To address these challenges, we introduce an optimization algorithm named as Probabilistic Symbol Perception (PSP), which makes a smooth transition between induction and deduction and keeps the correctness of ABL unchanged. We leverage probability as a bridge and present an efficient data structure, achieving the transfer from a continuous probability sequence to discrete Boolean sequences with low computational complexity. Experiments demonstrate the promising results.
Abstract:Large language models (LLMs), both proprietary and open-source, have demonstrated remarkable capabilities across various natural language processing tasks. However, they face significant limitations in legal reasoning tasks. Proprietary models introduce data privacy risks and high inference costs, while open-source models underperform due to insufficient legal domain training data. To address these limitations, we study data generation for legal reasoning to improve the legal reasoning performance of open-source LLMs with the help of proprietary LLMs. This is challenging due to the lack of legal knowledge in proprietary LLMs and the difficulty in verifying the generated data. We propose KgDG, a knowledge-guided data generation framework for legal reasoning. Our framework enables leveraging legal knowledge to enhance generation diversity and introduces a refinement and verification process to ensure the quality of generated data. Moreover, we expand the generated dataset to further enhance the LLM reasoning capabilities. Using KgDG, we create a synthetic legal reasoning dataset containing 50K high-quality examples. Our trained model LawGPT outperforms existing legal-specific LLMs and achieves performance comparable to proprietary LLMs, demonstrating the effectiveness of KgDG and LawGPT. Our code and resources is publicly available at https://anonymous.4open.science/r/KgDG-45F5 .
Abstract:The integration of slow-thinking mechanisms into large language models (LLMs) offers a promising way toward achieving Level 2 AGI Reasoners, as exemplified by systems like OpenAI's o1. However, several significant challenges remain, including inefficient overthinking and an overreliance on auxiliary reward models. We point out that these limitations stem from LLMs' inability to internalize the search process, a key component of effective reasoning. A critical step toward addressing this issue is enabling LLMs to autonomously determine when and where to backtrack, a fundamental operation in traditional search algorithms. To this end, we propose a self-backtracking mechanism that equips LLMs with the ability to backtrack during both training and inference. This mechanism not only enhances reasoning ability but also efficiency by transforming slow-thinking processes into fast-thinking through self-improvement. Empirical evaluations demonstrate that our proposal significantly enhances the reasoning capabilities of LLMs, achieving a performance gain of over 40 percent compared to the optimal-path supervised fine-tuning method. We believe this study introduces a novel and promising pathway for developing more advanced and robust Reasoners.
Abstract:Vision-language models (VLMs), such as CLIP, have demonstrated exceptional generalization capabilities and can quickly adapt to downstream tasks through prompt fine-tuning. Unfortunately, in classification tasks involving non-training classes, known as open-vocabulary setting, fine-tuned VLMs often overfit to train classes, resulting in a misalignment between confidence scores and actual accuracy on unseen classes, which significantly undermines their reliability in real-world deployments. Existing confidence calibration methods typically require training parameters or analyzing features from the training dataset, restricting their ability to generalize unseen classes without corresponding train data. Moreover, VLM-specific calibration methods rely solely on text features from train classes as calibration indicators, which inherently limits their ability to calibrate train classes. To address these challenges, we propose an effective multimodal calibration method Contrast-Aware Calibration (CAC). Building on the original CLIP's zero-shot adaptability and the conclusion from empirical analysis that poor intra-class and inter-class discriminative ability on unseen classes is the root cause, we calculate calibration weights based on the contrastive difference between the original and fine-tuned CLIP. This method not only adapts to calibrating unseen classes but also overcomes the limitations of previous VLM calibration methods that could not calibrate train classes. In experiments involving 11 datasets with 5 fine-tuning methods, CAC consistently achieved the best calibration effect on both train and unseen classes without sacrificing accuracy and inference speed.
Abstract:Tabular data is widely utilized in various machine learning tasks. Current tabular learning research predominantly focuses on closed environments, while in real-world applications, open environments are often encountered, where distribution and feature shifts occur, leading to significant degradation in model performance. Previous research has primarily concentrated on mitigating distribution shifts, whereas feature shifts, a distinctive and unexplored challenge of tabular data, have garnered limited attention. To this end, this paper conducts the first comprehensive study on feature shifts in tabular data and introduces the first tabular feature-shift benchmark (TabFSBench). TabFSBench evaluates impacts of four distinct feature-shift scenarios on four tabular model categories across various datasets and assesses the performance of large language models (LLMs) and tabular LLMs in the tabular benchmark for the first time. Our study demonstrates three main observations: (1) most tabular models have the limited applicability in feature-shift scenarios; (2) the shifted feature set importance has a linear relationship with model performance degradation; (3) model performance in closed environments correlates with feature-shift performance. Future research direction is also explored for each observation. TabFSBench is released for public access by using a few lines of Python codes at https://github.com/LAMDASZ-ML/TabFSBench.
Abstract:Pre-trained Vision-Language Models (VLMs) are becoming increasingly popular across various visual tasks, and several open-sourced VLM variants have been released. However, selecting the best-performing pre-trained VLM for a specific downstream task is challenging since no single VLM can achieve promising performance on all downstream tasks, and evaluating all available VLMs is impossible due to time and data limitations. To address this problem, this paper proposes a novel paradigm to select and reuse VLM for downstream tasks, called Model Label Learning (MLL). The proposal contains three key modules: \emph{model labeling}, which assigns labels to each VLM to describe their specialty and utility; \emph{model selection}, which matches the requirements of the target task with model labels; and \emph{model reuse}, which applies selected VLMs to the target task in an ensemble manner. The proposal is highly computationally efficient and growable since the model labeling process is completed target task independent and the ability could grow with the number of candidate VLMs. We also introduce a new benchmark for evaluating VLM selection methods, including 49 VLMs and 17 target task datasets. Experimental results clearly demonstrate the effectiveness of the proposed method for selecting and reusing VLMs.
Abstract:Semi-supervised learning (SSL) aims to improve performance by exploiting unlabeled data when labels are scarce. Conventional SSL studies typically assume close environments where important factors (e.g., label, feature, distribution) between labeled and unlabeled data are consistent. However, more practical tasks involve open environments where important factors between labeled and unlabeled data are inconsistent. It has been reported that exploiting inconsistent unlabeled data causes severe performance degradation, even worse than the simple supervised learning baseline. Manually verifying the quality of unlabeled data is not desirable, therefore, it is important to study robust SSL with inconsistent unlabeled data in open environments. This paper briefly introduces some advances in this line of research, focusing on techniques concerning label, feature, and data distribution inconsistency in SSL, and presents the evaluation benchmarks. Open research problems are also discussed for reference purposes.
Abstract:Deep generative models have achieved promising results in image generation, and various generative model hubs, e.g., Hugging Face and Civitai, have been developed that enable model developers to upload models and users to download models. However, these model hubs lack advanced model management and identification mechanisms, resulting in users only searching for models through text matching, download sorting, etc., making it difficult to efficiently find the model that best meets user requirements. In this paper, we propose a novel setting called Generative Model Identification (GMI), which aims to enable the user to identify the most appropriate generative model(s) for the user's requirements from a large number of candidate models efficiently. To our best knowledge, it has not been studied yet. In this paper, we introduce a comprehensive solution consisting of three pivotal modules: a weighted Reduced Kernel Mean Embedding (RKME) framework for capturing the generated image distribution and the relationship between images and prompts, a pre-trained vision-language model aimed at addressing dimensionality challenges, and an image interrogator designed to tackle cross-modality issues. Extensive empirical results demonstrate the proposal is both efficient and effective. For example, users only need to submit a single example image to describe their requirements, and the model platform can achieve an average top-4 identification accuracy of more than 80%.
Abstract:Tabular data plays a vital role in various real-world scenarios and finds extensive applications. Although recent deep tabular models have shown remarkable success, they still struggle to handle data distribution shifts, leading to performance degradation when testing distributions change. To remedy this, a robust tabular model must adapt to generalize to unknown distributions during testing. In this paper, we investigate the problem of fully test-time adaptation (FTTA) for tabular data, where the model is adapted using only the testing data. We identify three key challenges: the existence of label and covariate distribution shifts, the lack of effective data augmentation, and the sensitivity of adaptation, which render existing FTTA methods ineffective for tabular data. To this end, we propose the Fully Test-time Adaptation for Tabular data, namely FTAT, which enables FTTA methods to robustly optimize the label distribution of predictions, adapt to shifted covariate distributions, and suit a variety of tasks and models effectively. We conduct comprehensive experiments on six benchmark datasets, which are evaluated using three metrics. The experimental results demonstrate that FTAT outperforms state-of-the-art methods by a margin.
Abstract:A critical question about Large Language Models (LLMs) is whether their apparent deficiency in mathematical reasoning is inherent, or merely a result of insufficient exposure to high-quality mathematical data. To explore this, we developed an automated method for generating high-quality, supervised mathematical datasets. The method carefully mutates existing math problems, ensuring both diversity and validity of the newly generated problems. This is achieved by a neuro-symbolic data generation framework combining the intuitive informalization strengths of LLMs, and the precise symbolic reasoning of math solvers along with projected Markov chain Monte Carlo sampling in the highly-irregular symbolic space. Empirical experiments demonstrate the high quality of data generated by the proposed method, and that the LLMs, specifically LLaMA-2 and Mistral, when realigned with the generated data, surpass their state-of-the-art counterparts.