Abstract:Semi-supervised learning (SSL) aims to improve performance by exploiting unlabeled data when labels are scarce. Conventional SSL studies typically assume close environments where important factors (e.g., label, feature, distribution) between labeled and unlabeled data are consistent. However, more practical tasks involve open environments where important factors between labeled and unlabeled data are inconsistent. It has been reported that exploiting inconsistent unlabeled data causes severe performance degradation, even worse than the simple supervised learning baseline. Manually verifying the quality of unlabeled data is not desirable, therefore, it is important to study robust SSL with inconsistent unlabeled data in open environments. This paper briefly introduces some advances in this line of research, focusing on techniques concerning label, feature, and data distribution inconsistency in SSL, and presents the evaluation benchmarks. Open research problems are also discussed for reference purposes.
Abstract:Deep generative models have achieved promising results in image generation, and various generative model hubs, e.g., Hugging Face and Civitai, have been developed that enable model developers to upload models and users to download models. However, these model hubs lack advanced model management and identification mechanisms, resulting in users only searching for models through text matching, download sorting, etc., making it difficult to efficiently find the model that best meets user requirements. In this paper, we propose a novel setting called Generative Model Identification (GMI), which aims to enable the user to identify the most appropriate generative model(s) for the user's requirements from a large number of candidate models efficiently. To our best knowledge, it has not been studied yet. In this paper, we introduce a comprehensive solution consisting of three pivotal modules: a weighted Reduced Kernel Mean Embedding (RKME) framework for capturing the generated image distribution and the relationship between images and prompts, a pre-trained vision-language model aimed at addressing dimensionality challenges, and an image interrogator designed to tackle cross-modality issues. Extensive empirical results demonstrate the proposal is both efficient and effective. For example, users only need to submit a single example image to describe their requirements, and the model platform can achieve an average top-4 identification accuracy of more than 80%.
Abstract:Tabular data plays a vital role in various real-world scenarios and finds extensive applications. Although recent deep tabular models have shown remarkable success, they still struggle to handle data distribution shifts, leading to performance degradation when testing distributions change. To remedy this, a robust tabular model must adapt to generalize to unknown distributions during testing. In this paper, we investigate the problem of fully test-time adaptation (FTTA) for tabular data, where the model is adapted using only the testing data. We identify three key challenges: the existence of label and covariate distribution shifts, the lack of effective data augmentation, and the sensitivity of adaptation, which render existing FTTA methods ineffective for tabular data. To this end, we propose the Fully Test-time Adaptation for Tabular data, namely FTAT, which enables FTTA methods to robustly optimize the label distribution of predictions, adapt to shifted covariate distributions, and suit a variety of tasks and models effectively. We conduct comprehensive experiments on six benchmark datasets, which are evaluated using three metrics. The experimental results demonstrate that FTAT outperforms state-of-the-art methods by a margin.
Abstract:A critical question about Large Language Models (LLMs) is whether their apparent deficiency in mathematical reasoning is inherent, or merely a result of insufficient exposure to high-quality mathematical data. To explore this, we developed an automated method for generating high-quality, supervised mathematical datasets. The method carefully mutates existing math problems, ensuring both diversity and validity of the newly generated problems. This is achieved by a neuro-symbolic data generation framework combining the intuitive informalization strengths of LLMs, and the precise symbolic reasoning of math solvers along with projected Markov chain Monte Carlo sampling in the highly-irregular symbolic space. Empirical experiments demonstrate the high quality of data generated by the proposed method, and that the LLMs, specifically LLaMA-2 and Mistral, when realigned with the generated data, surpass their state-of-the-art counterparts.
Abstract:Recent learning-to-imitation methods have shown promising results in planning via imitating within the observation-action space. However, their ability in open environments remains constrained, particularly in long-horizon tasks. In contrast, traditional symbolic planning excels in long-horizon tasks through logical reasoning over human-defined symbolic spaces but struggles to handle observations beyond symbolic states, such as high-dimensional visual inputs encountered in real-world scenarios. In this work, we draw inspiration from abductive learning and introduce a novel framework \textbf{AB}ductive \textbf{I}mitation \textbf{L}earning (ABIL) that integrates the benefits of data-driven learning and symbolic-based reasoning, enabling long-horizon planning. Specifically, we employ abductive reasoning to understand the demonstrations in symbolic space and design the principles of sequential consistency to resolve the conflicts between perception and reasoning. ABIL generates predicate candidates to facilitate the perception from raw observations to symbolic space without laborious predicate annotations, providing a groundwork for symbolic planning. With the symbolic understanding, we further develop a policy ensemble whose base policies are built with different logical objectives and managed through symbolic reasoning. Experiments show that our proposal successfully understands the observations with the task-relevant symbolics to assist the imitation learning. Importantly, ABIL demonstrates significantly improved data efficiency and generalization across various long-horizon tasks, highlighting it as a promising solution for long-horizon planning. Project website: \url{https://www.lamda.nju.edu.cn/shaojj/KDD25_ABIL/}.
Abstract:The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
Abstract:Recent research on fine-tuning vision-language models has demonstrated impressive performance in various downstream tasks. However, the challenge of obtaining accurately labeled data in real-world applications poses a significant obstacle during the fine-tuning process. To address this challenge, this paper presents a Denoising Fine-Tuning framework, called DeFT, for adapting vision-language models. DeFT utilizes the robust alignment of textual and visual features pre-trained on millions of auxiliary image-text pairs to sieve out noisy labels. The proposed framework establishes a noisy label detector by learning positive and negative textual prompts for each class. The positive prompt seeks to reveal distinctive features of the class, while the negative prompt serves as a learnable threshold for separating clean and noisy samples. We employ parameter-efficient fine-tuning for the adaptation of a pre-trained visual encoder to promote its alignment with the learned textual prompts. As a general framework, DeFT can seamlessly fine-tune many pre-trained models to downstream tasks by utilizing carefully selected clean samples. Experimental results on seven synthetic and real-world noisy datasets validate the effectiveness of DeFT in both noisy label detection and image classification.
Abstract:Vision-language models (VLMs) like CLIP have demonstrated impressive zero-shot ability in image classification tasks by aligning text and images but suffer inferior performance compared with task-specific expert models. On the contrary, expert models excel in their specialized domains but lack zero-shot ability for new tasks. How to obtain both the high performance of expert models and zero-shot ability is an important research direction. In this paper, we attempt to demonstrate that by constructing a model hub and aligning models with their functionalities using model labels, new tasks can be solved in a zero-shot manner by effectively selecting and reusing models in the hub. We introduce a novel paradigm, Model Label Learning (MLL), which bridges the gap between models and their functionalities through a Semantic Directed Acyclic Graph (SDAG) and leverages an algorithm, Classification Head Combination Optimization (CHCO), to select capable models for new tasks. Compared with the foundation model paradigm, it is less costly and more scalable, i.e., the zero-shot ability grows with the sizes of the model hub. Experiments on seven real-world datasets validate the effectiveness and efficiency of MLL, demonstrating that expert models can be effectively reused for zero-shot tasks. Our code will be released publicly.
Abstract:In offline Imitation Learning (IL), one of the main challenges is the \textit{covariate shift} between the expert observations and the actual distribution encountered by the agent, because it is difficult to determine what action an agent should take when outside the state distribution of the expert demonstrations. Recently, the model-free solutions introduce the supplementary data and identify the latent expert-similar samples to augment the reliable samples during learning. Model-based solutions build forward dynamic models with conservatism quantification and then generate additional trajectories in the neighborhood of expert demonstrations. However, without reward supervision, these methods are often over-conservative in the out-of-expert-support regions, because only in states close to expert-observed states can there be a preferred action enabling policy optimization. To encourage more exploration on expert-unobserved states, we propose a novel model-based framework, called offline Imitation Learning with Self-paced Reverse Augmentation (SRA). Specifically, we build a reverse dynamic model from the offline demonstrations, which can efficiently generate trajectories leading to the expert-observed states in a self-paced style. Then, we use the subsequent reinforcement learning method to learn from the augmented trajectories and transit from expert-unobserved states to expert-observed states. This framework not only explores the expert-unobserved states but also guides maximizing long-term returns on these states, ultimately enabling generalization beyond the expert data. Empirical results show that our proposal could effectively mitigate the covariate shift and achieve the state-of-the-art performance on the offline imitation learning benchmarks. Project website: \url{https://www.lamda.nju.edu.cn/shaojj/KDD24_SRA/}.
Abstract:Pre-trained vision-language models like CLIP have shown powerful zero-shot inference ability via image-text matching and prove to be strong few-shot learners in various downstream tasks. However, in real-world scenarios, adapting CLIP to downstream tasks may encounter the following challenges: 1) data may exhibit long-tailed data distributions and might not have abundant samples for all the classes; 2) There might be emerging tasks with new classes that contain no samples at all. To overcome them, we propose a novel framework to achieve efficient and long-tailed generalization, which can be termed as Candle. During the training process, we propose compensating logit-adjusted loss to encourage large margins of prototypes and alleviate imbalance both within the base classes and between the base and new classes. For efficient adaptation, we treat the CLIP model as a black box and leverage the extracted features to obtain visual and textual prototypes for prediction. To make full use of multi-modal information, we also propose cross-modal attention to enrich the features from both modalities. For effective generalization, we introduce virtual prototypes for new classes to make up for their lack of training images. Candle achieves state-of-the-art performance over extensive experiments on 11 diverse datasets while substantially reducing the training time, demonstrating the superiority of our approach. The source code is available at https://github.com/shijxcs/Candle.