Abstract:In real-world text classification tasks, negative texts often contain a minimal proportion of negative content, which is especially problematic in areas like text quality control, legal risk screening, and sensitive information interception. This challenge manifests at two levels: at the macro level, distinguishing negative texts is difficult due to the high similarity between coarse-grained positive and negative samples; at the micro level, the issue stems from extreme class imbalance and a lack of fine-grained labels. To address these challenges, we propose transforming the coarse-grained positive-negative (PN) classification task into an imbalanced fine-grained positive-unlabeled (PU) classification problem, supported by theoretical analysis. We introduce a novel framework, Balanced Fine-Grained Positive-Unlabeled (BFGPU) learning, which features a unique PU learning loss function that optimizes macro-level performance amidst severe imbalance at the micro level. The framework's performance is further boosted by rebalanced pseudo-labeling and threshold adjustment. Extensive experiments on both public and real-world datasets demonstrate the effectiveness of BFGPU, which outperforms other methods, even in extreme scenarios where both macro and micro levels are highly imbalanced.
Abstract:The current Neuro-Symbolic (NeSy) Learning paradigm suffers from an over-reliance on labeled data. If we completely disregard labels, it leads to less symbol information, a larger solution space, and more shortcuts-issues that current Nesy systems cannot resolve. This paper introduces a novel learning paradigm, Verification Learning (VL), which addresses this challenge by transforming the label-based reasoning process in Nesy into a label-free verification process. VL achieves excellent learning results solely by relying on unlabeled data and a function that verifies whether the current predictions conform to the rules. We formalize this problem as a Constraint Optimization Problem (COP) and propose a Dynamic combinatorial Sorting (DCS) algorithm that accelerates the solution by reducing verification attempts, effectively lowering computational costs to the level of a Constraint Satisfaction Problem (CSP). To further enhance performance, we introduce a prior alignment method to address potential shortcuts. Our theoretical analysis points out which tasks in Nesy systems can be completed without labels and explains why rules can replace infinite labels, such as in addition, for some tasks, while for others, like Sudoku, the rules have no effect. We validate the proposed framework through several fully unsupervised tasks including addition, sort, match, and chess, each showing significant performance and efficiency improvements.
Abstract:Abductive learning (ABL) that integrates strengths of machine learning and logical reasoning to improve the learning generalization, has been recently shown effective. However, its efficiency is affected by the transition between numerical induction and symbolical deduction, leading to high computational costs in the worst-case scenario. Efforts on this issue remain to be limited. In this paper, we identified three reasons why previous optimization algorithms for ABL were not effective: insufficient utilization of prediction, symbol relationships, and accumulated experience in successful abductive processes, resulting in redundant calculations to the knowledge base. To address these challenges, we introduce an optimization algorithm named as Probabilistic Symbol Perception (PSP), which makes a smooth transition between induction and deduction and keeps the correctness of ABL unchanged. We leverage probability as a bridge and present an efficient data structure, achieving the transfer from a continuous probability sequence to discrete Boolean sequences with low computational complexity. Experiments demonstrate the promising results.
Abstract:Semi-supervised learning (SSL) aims to improve performance by exploiting unlabeled data when labels are scarce. Conventional SSL studies typically assume close environments where important factors (e.g., label, feature, distribution) between labeled and unlabeled data are consistent. However, more practical tasks involve open environments where important factors between labeled and unlabeled data are inconsistent. It has been reported that exploiting inconsistent unlabeled data causes severe performance degradation, even worse than the simple supervised learning baseline. Manually verifying the quality of unlabeled data is not desirable, therefore, it is important to study robust SSL with inconsistent unlabeled data in open environments. This paper briefly introduces some advances in this line of research, focusing on techniques concerning label, feature, and data distribution inconsistency in SSL, and presents the evaluation benchmarks. Open research problems are also discussed for reference purposes.
Abstract:Large language models (LLMs) have demonstrated impressive performance on reasoning tasks, which can be further improved through few-shot prompting techniques. However, the current evaluation primarily focuses on carefully constructed benchmarks and neglects the consideration of real-world reasoning problems that present missing and contradictory conditions, known as ill-defined problems. Our observations suggest that existing few-shot prompting techniques are ineffective in such scenarios, often providing overconfident answers or hallucination. To further study this problem, we develop a benchmark called Problems with Missing and Contradictory conditions (PMC) and introduce two novel metrics to evaluate the performance of few-shot prompting methods in these scenarios. Our analysis using the PMC benchmark reveals a trade-off dilemma between the performance of mathematical reasoning for well-defined problems and the ability to recognize ill-defined problems. To address the challenges posed by PMC, we propose a novel few-shot prompting method called SMT-LIB Prompting (SLP), which utilizes the SMT-LIB language to model the problems instead of solving them directly. Subsequently, a double-check solving strategy checks the satisfiability and uniqueness of the solution and provides final feedback. Extensive experiments demonstrate the superiority of our SLP approach compared to existing few-shot prompting methods when dealing with problems with missing and contradictory conditions. We will open-source our benchmark and code to facilitate future research.
Abstract:LAMDA-SSL is open-sourced on GitHub and its detailed usage documentation is available at https://ygzwqzd.github.io/LAMDA-SSL/. This documentation introduces LAMDA-SSL in detail from various aspects and can be divided into four parts. The first part introduces the design idea, features and functions of LAMDA-SSL. The second part shows the usage of LAMDA-SSL by abundant examples in detail. The third part introduces all algorithms implemented by LAMDA-SSL to help users quickly understand and choose SSL algorithms. The fourth part shows the APIs of LAMDA-SSL. This detailed documentation greatly reduces the cost of familiarizing users with LAMDA-SSL toolkit and SSL algorithms.