Abstract:Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
Abstract:Vision token pruning has proven to be an effective acceleration technique for the efficient Vision Language Model (VLM). However, existing pruning methods demonstrate excellent performance preservation in visual question answering (VQA) and suffer substantial degradation on visual grounding (VG) tasks. Our analysis of the VLM's processing pipeline reveals that strategies utilizing global semantic similarity and attention scores lose the global spatial reference frame, which is derived from the interactions of tokens' positional information. Motivated by these findings, we propose $\text{Nüwa}$, a two-stage token pruning framework that enables efficient feature aggregation while maintaining spatial integrity. In the first stage, after the vision encoder, we apply three operations, namely separation, alignment, and aggregation, which are inspired by swarm intelligence algorithms to retain information-rich global spatial anchors. In the second stage, within the LLM, we perform text-guided pruning to retain task-relevant visual tokens. Extensive experiments demonstrate that $\text{Nüwa}$ achieves SOTA performance on multiple VQA benchmarks (from 94% to 95%) and yields substantial improvements on visual grounding tasks (from 7% to 47%).
Abstract:Rapid advancements in sixth-generation (6G) networks and large language models (LLMs) have paved the way for ubiquitous intelligence, wherein seamless connectivity and distributed artificial intelligence (AI) have revolutionized various aspects of our lives.However, realizing this vision faces significant challenges owing to the fragmented and heterogeneous computing resources across hierarchical networks, which are insufficient for individual LLM agents to perform complex reasoning tasks.To address this issue, we propose Collaborative Orchestration Role at Edge (CORE), an innovative framework that employs a collaborative learning system in which multiple LLMs, each assigned a distinct functional role, are distributed across mobile devices and tiered edge servers. The system integrates three optimization modules, encompassing real-time perception,dynamic role orchestration, and pipeline-parallel execution, to facilitate efficient and rapid collaboration among distributed agents. Furthermore, we introduce a novel role affinity scheduling algorithm for dynamically orchestrating LLM role assignments across the hierarchical edge infrastructure, intelligently matching computational demands with available dispersed resources.Finally, comprehensive case studies and performance evaluations across various 6G application scenarios demonstrated the efficacy of CORE, revealing significant enhancements in the system efficiency and task completion rates. Building on these promising outcomes, we further validated the practical applicability of CORE by deploying it on a real-world edge-computing platform,that exhibits robust performance in operational environments.




Abstract:Multimodal Face Anti-Spoofing (FAS) methods, which integrate multiple visual modalities, often suffer even more severe performance degradation than unimodal FAS when deployed in unseen domains. This is mainly due to two overlooked risks that affect cross-domain multimodal generalization. The first is the modal representation invariant risk, i.e., whether representations remain generalizable under domain shift. We theoretically show that the inherent class asymmetry in FAS (diverse spoofs vs. compact reals) enlarges the upper bound of generalization error, and this effect is further amplified in multimodal settings. The second is the modal synergy invariant risk, where models overfit to domain-specific inter-modal correlations. Such spurious synergy cannot generalize to unseen attacks in target domains, leading to performance drops. To solve these issues, we propose a provable framework, namely Multimodal Representation and Synergy Invariance Learning (RiSe). For representation risk, RiSe introduces Asymmetric Invariant Risk Minimization (AsyIRM), which learns an invariant spherical decision boundary in radial space to fit asymmetric distributions, while preserving domain cues in angular space. For synergy risk, RiSe employs Multimodal Synergy Disentanglement (MMSD), a self-supervised task enhancing intrinsic, generalizable modal features via cross-sample mixing and disentanglement. Theoretical analysis and experiments verify RiSe, which achieves state-of-the-art cross-domain performance.
Abstract:Can Multimodal Large Language Models (MLLMs) discern confused objects that are visually present but audio-absent? To study this, we introduce a new benchmark, AV-ConfuseBench, which simulates an ``Audio-Visual Confusion'' scene by modifying the corresponding sound of an object in the video, e.g., mute the sounding object and ask MLLMs Is there a/an muted-object sound''. Experimental results reveal that MLLMs, such as Qwen2.5-Omni and Gemini 2.5, struggle to discriminate non-existent audio due to visually dominated reasoning. Motivated by this observation, we introduce RL-CoMM, a Reinforcement Learning-based Collaborative Multi-MLLM that is built upon the Qwen2.5-Omni foundation. RL-CoMM includes two stages: 1) To alleviate visually dominated ambiguities, we introduce an external model, a Large Audio Language Model (LALM), as the reference model to generate audio-only reasoning. Then, we design a Step-wise Reasoning Reward function that enables MLLMs to self-improve audio-visual reasoning with the audio-only reference. 2) To ensure an accurate answer prediction, we introduce Answer-centered Confidence Optimization to reduce the uncertainty of potential heterogeneous reasoning differences. Extensive experiments on audio-visual question answering and audio-visual hallucination show that RL-CoMM improves the accuracy by 10~30\% over the baseline model with limited training data. Follow: https://github.com/rikeilong/AVConfusion.
Abstract:Large Language Models (LLMs) hold rich implicit knowledge and powerful transferability. In this paper, we explore the combination of LLMs with the human skeleton to perform action classification and description. However, when treating LLM as a recognizer, two questions arise: 1) How can LLMs understand skeleton? 2) How can LLMs distinguish among actions? To address these problems, we introduce a novel paradigm named learning Skeleton representation with visUal-motion knowledGe for Action Recognition (SUGAR). In our pipeline, we first utilize off-the-shelf large-scale video models as a knowledge base to generate visual, motion information related to actions. Then, we propose to supervise skeleton learning through this prior knowledge to yield discrete representations. Finally, we use the LLM with untouched pre-training weights to understand these representations and generate the desired action targets and descriptions. Notably, we present a Temporal Query Projection (TQP) module to continuously model the skeleton signals with long sequences. Experiments on several skeleton-based action classification benchmarks demonstrate the efficacy of our SUGAR. Moreover, experiments on zero-shot scenarios show that SUGAR is more versatile than linear-based methods.
Abstract:Single-photon emission computed tomography for myocardial perfusion imaging (MPI SPECT) is a widely used diagnostic tool for coronary artery disease. However, the procedure requires considerable scanning time, leading to patient discomfort and the potential for motion-induced artifacts. Reducing the number of projection views while keeping the time per view unchanged provides a mechanism to shorten the scanning time. However, this approach leads to increased sampling artifacts, higher noise, and hence limited image quality. To address these issues, we propose sparseview SPECT image enhancement (SPASHT), inherently training the algorithm to improve performance on defect-detection tasks. We objectively evaluated SPASHT on the clinical task of detecting perfusion defects in a retrospective clinical study using data from patients who underwent MPI SPECT, where the defects were clinically realistic and synthetically inserted. The study was conducted for different numbers of fewer projection views, including 1/6, 1/3, and 1/2 of the typical projection views for MPI SPECT. Performance on the detection task was quantified using area under the receiver operating characteristic curve (AUC). Images obtained with SPASHT yielded significantly improved AUC compared to those obtained with the sparse-view protocol for all the considered numbers of fewer projection views. To further assess performance, a human observer study on the task of detecting perfusion defects was conducted. Results from the human observer study showed improved detection performance with images reconstructed using SPASHT compared to those from the sparse-view protocol. The results provide evidence of the efficacy of SPASHT in improving the quality of sparse-view MPI SPECT images and motivate further clinical validation.
Abstract:Face forgery detection faces a critical challenge: a persistent gap between offline benchmarks and real-world efficacy,which we attribute to the ecological invalidity of training data.This work introduces Agent4FaceForgery to address two fundamental problems: (1) how to capture the diverse intents and iterative processes of human forgery creation, and (2) how to model the complex, often adversarial, text-image interactions that accompany forgeries in social media. To solve this,we propose a multi-agent framework where LLM-poweredagents, equipped with profile and memory modules, simulate the forgery creation process. Crucially, these agents interact in a simulated social environment to generate samples labeled for nuanced text-image consistency, moving beyond simple binary classification. An Adaptive Rejection Sampling (ARS) mechanism ensures data quality and diversity. Extensive experiments validate that the data generated by our simulationdriven approach brings significant performance gains to detectors of multiple architectures, fully demonstrating the effectiveness and value of our framework.
Abstract:The ubiquitous computing resources in 6G networks provide ideal environments for the fusion of large language models (LLMs) and intelligent services through the agent framework. With auxiliary modules and planning cores, LLM-enabled agents can autonomously plan and take actions to deal with diverse environment semantics and user intentions. However, the limited resources of individual network devices significantly hinder the efficient operation of LLM-enabled agents with complex tool calls, highlighting the urgent need for efficient multi-level device collaborations. To this end, the framework and method of the LLM-enabled multi-agent system with dual-loop terminal-edge collaborations are proposed in 6G networks. Firstly, the outer loop consists of the iterative collaborations between the global agent and multiple sub-agents deployed on edge servers and terminals, where the planning capability is enhanced through task decomposition and parallel sub-task distribution. Secondly, the inner loop utilizes sub-agents with dedicated roles to circularly reason, execute, and replan the sub-task, and the parallel tool calling generation with offloading strategies is incorporated to improve efficiency. The improved task planning capability and task execution efficiency are validated through the conducted case study in 6G-supported urban safety governance. Finally, the open challenges and future directions are thoroughly analyzed in 6G networks, accelerating the advent of the 6G era.




Abstract:We propose Spatial-Aware Correlated Multiple Instance Learning (SAC-MIL) for performing WSI classification. SAC-MIL consists of a positional encoding module to encode position information and a SAC block to perform full instance correlations. The positional encoding module utilizes the instance coordinates within the slide to encode the spatial relationships instead of the instance index in the input WSI sequence. The positional encoding module can also handle the length extrapolation issue where the training and testing sequences have different lengths. The SAC block is an MLP-based method that performs full instance correlation in linear time complexity with respect to the sequence length. Due to the simple structure of MLP, it is easy to deploy since it does not require custom CUDA kernels, compared to Transformer-based methods for WSI classification. SAC-MIL has achieved state-of-the-art performance on the CAMELYON-16, TCGA-LUNG, and TCGA-BRAC datasets. The code will be released upon acceptance.