Abstract:The precise simulation of turbulent flows holds immense significance across various scientific and engineering domains, including climate science, freshwater science, and energy-efficient manufacturing. Within the realm of simulating turbulent flows, large eddy simulation (LES) has emerged as a prevalent alternative to direct numerical simulation (DNS), offering computational efficiency. However, LES cannot accurately capture the full spectrum of turbulent transport scales and is present only at a lower spatial resolution. Reconstructing high-fidelity DNS data from the lower-resolution LES data is essential for numerous applications, but it poses significant challenges to existing super-resolution techniques, primarily due to the complex spatio-temporal nature of turbulent flows. This paper proposes a novel flow reconstruction approach that leverages physical knowledge to model flow dynamics. Different from traditional super-resolution techniques, the proposed approach uses LES data only in the testing phase through a degradation-based refinement approach to enforce physical constraints and mitigate cumulative reconstruction errors over time. Furthermore, a feature sampling strategy is developed to enable flow data reconstruction across different resolutions. The results on two distinct sets of turbulent flow data indicate the effectiveness of the proposed method in reconstructing high-resolution DNS data, preserving the inherent physical attributes of flow transport, and achieving DNS reconstruction at different resolutions.
Abstract:The precise simulation of turbulent flows is of immense importance in a variety of scientific and engineering fields, including climate science, freshwater science, and the development of energy-efficient manufacturing processes. Within the realm of turbulent flow simulation, direct numerical simulation (DNS) is widely considered to be the most reliable approach, but it is prohibitively expensive for long-term simulation at fine spatial scales. Given the pressing need for efficient simulation, there is an increasing interest in building machine learning models for turbulence, either by reconstructing DNS from alternative low-fidelity simulations or by predicting DNS based on the patterns learned from historical data. However, standard machine learning techniques remain limited in capturing complex spatio-temporal characteristics of turbulent flows, resulting in limited performance and generalizability. This paper presents a novel physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics. The model is further refined by a self-augmentation mechanism to reduce the accumulated error in long-term simulations. The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data, showcasing the model's capability to reconstruct high-resolution DNS data, maintain the inherent physical properties of flow transport, and generate flow simulations across various resolutions. Additionally, experimental results on multiple 2D vorticity flow series, generated by different PDEs, highlight the transferability and generalizability of the proposed method. This confirms its applicability to a wide range of real-world scenarios in which extensive simulations are needed under diverse settings.
Abstract:Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Abstract:Simulating turbulence is critical for many societally important applications in aerospace engineering, environmental science, the energy industry, and biomedicine. Large eddy simulation (LES) has been widely used as an alternative to direct numerical simulation (DNS) for simulating turbulent flows due to its reduced computational cost. However, LES is unable to capture all of the scales of turbulent transport accurately. Reconstructing DNS from low-resolution LES is critical for many scientific and engineering disciplines, but it poses many challenges to existing super-resolution methods due to the spatio-temporal complexity of turbulent flows. In this work, we propose a new physics-guided neural network for reconstructing the sequential DNS from low-resolution LES data. The proposed method leverages the partial differential equation that underlies the flow dynamics in the design of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce physical constraints and further reduce the accumulated reconstruction errors over long periods. The results on two different types of turbulent flow data confirm the superiority of the proposed method in reconstructing the high-resolution DNS data and preserving the physical characteristics of flow transport.
Abstract:Semantic textual similarity (STS) in the clinical domain helps improve diagnostic efficiency and produce concise texts for downstream data mining tasks. However, given the high degree of domain knowledge involved in clinic text, it remains challenging for general language models to infer implicit medical relationships behind clinical sentences and output similarities correctly. In this paper, we present a graph-augmented cyclic learning framework for similarity estimation in the clinical domain. The framework can be conveniently implemented on a state-of-art backbone language model, and improve its performance by leveraging domain knowledge through co-training with an auxiliary graph convolution network (GCN) based network. We report the success of introducing domain knowledge in GCN and the co-training framework by improving the Bio-clinical BERT baseline by 16.3% and 27.9%, respectively.