Abstract:Today's analog/mixed-signal (AMS) integrated circuit (IC) designs demand substantial manual intervention. The advent of multimodal large language models (MLLMs) has unveiled significant potential across various fields, suggesting their applicability in streamlining large-scale AMS IC design as well. A bottleneck in employing MLLMs for automatic AMS circuit generation is the absence of a comprehensive dataset delineating the schematic-netlist relationship. We therefore design an automatic technique for converting schematics into netlists, and create dataset AMSNet, encompassing transistor-level schematics and corresponding SPICE format netlists. With a growing size, AMSNet can significantly facilitate exploration of MLLM applications in AMS circuit design. We have made an initial set of netlists public, and will make both our netlist generation tool and the full dataset available upon publishing of this paper.
Abstract:Graph convolutional networks (GCNs) have been introduced to effectively process non-euclidean graph data. However, GCNs incur large amounts of irregularity in computation and memory access, which prevents efficient use of traditional neural network accelerators. Moreover, existing dedicated GCN accelerators demand high memory volumes and are difficult to implement onto resource limited edge devices. In this work, we propose LW-GCN, a lightweight FPGA-based accelerator with a software-hardware co-designed process to tackle irregularity in computation and memory access in GCN inference. LW-GCN decomposes the main GCN operations into sparse-dense matrix multiplication (SDMM) and dense matrix multiplication (DMM). We propose a novel compression format to balance workload across PEs and prevent data hazards. Moreover, we apply data quantization and workload tiling, and map both SDMM and DMM of GCN inference onto a uniform architecture on resource limited hardware. Evaluation on GCN and GraphSAGE are performed on Xilinx Kintex-7 FPGA with three popular datasets. Compared to existing CPU, GPU, and state-of-the-art FPGA-based accelerator, LW-GCN reduces latency by up to 60x, 12x and 1.7x and increases power efficiency by up to 912x., 511x and 3.87x, respectively. Furthermore, compared with NVIDIA's latest edge GPU Jetson Xavier NX, LW-GCN achieves speedup and energy savings of 32x and 84x, respectively.
Abstract:We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images representing appropriate everyday scenarios, and using these captions to enrich and steer the generation process. Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model performance while successfully addressing several issues of the baseline generations, including poor commonsense, fluency, and specificity.